美文网首页
cs231n作业:Assignment1-SVM

cs231n作业:Assignment1-SVM

作者: Diane小山 | 来源:发表于2019-05-15 22:07 被阅读0次

    加载数据集

    # Load the raw CIFAR-10 data.
    cifar10_dir = 'cs231n/datasets/cifar-10-batches-py'
    X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)
    
    # As a sanity check, we print out the size of the training and test data.
    print('Training data shape: ', X_train.shape)
    print('Training labels shape: ', y_train.shape)
    print('Test data shape: ', X_test.shape)
    print('Test labels shape: ', y_test.shape)
    

    结果
    Training data shape: (50000, 32, 32, 3)
    Training labels shape: (50000,)
    Test data shape: (10000, 32, 32, 3)
    Test labels shape: (10000,)

    分割数据集

    # Split the data into train, val, and test sets. In addition we will
    # create a small development set as a subset of the training data;
    # we can use this for development so our code runs faster.
    num_training = 49000
    num_validation = 1000
    num_test = 1000
    num_dev = 500
    
    # Our validation set will be num_validation points from the original
    # training set.
    mask = range(num_training, num_training + num_validation)
    X_val = X_train[mask]
    y_val = y_train[mask]
    # 
    # Our training set will be the first num_train points from the original
    # training set.
    mask = range(num_training)
    X_train = X_train[mask]
    y_train = y_train[mask]
    
    # We will also make a development set, which is a small subset of
    # the training set.
    mask = np.random.choice(num_training, num_dev, replace=False)
    X_dev = X_train[mask]
    y_dev = y_train[mask]
    
    # We use the first num_test points of the original test set as our
    # test set.
    mask = range(num_test)
    X_test = X_test[mask]
    y_test = y_test[mask]
    
    print('Train data shape: ', X_train.shape)
    print('Train labels shape: ', y_train.shape)
    print('Validation data shape: ', X_val.shape)
    print('Validation labels shape: ', y_val.shape)
    print('Test data shape: ', X_test.shape)
    print('Test labels shape: ', y_test.shape)
    

    结果
    Train data shape: (49000, 32, 32, 3)
    Train labels shape: (49000,)
    Validation data shape: (1000, 32, 32, 3)
    Validation labels shape: (1000,)
    Test data shape: (1000, 32, 32, 3)
    Test labels shape: (1000,)

    将32323展开成3072*1

    # Preprocessing: reshape the image data into rows
    X_train = np.reshape(X_train, (X_train.shape[0], -1))
    X_val = np.reshape(X_val, (X_val.shape[0], -1))
    X_test = np.reshape(X_test, (X_test.shape[0], -1))
    X_dev = np.reshape(X_dev, (X_dev.shape[0], -1))
    
    # As a sanity check, print out the shapes of the data
    print('Training data shape: ', X_train.shape)
    print('Validation data shape: ', X_val.shape)
    print('Test data shape: ', X_test.shape)
    print('dev data shape: ', X_dev.shape)
    

    结果
    Training data shape: (49000, 3072)
    Validation data shape: (1000, 3072)
    Test data shape: (1000, 3072)
    dev data shape: (500, 3072)
    接下来对图像数据进行中心化操作,这里不再赘述。

    naive implementation of the loss

    def svm_loss_naive(W, X, y, reg):
      """
      Structured SVM loss function, naive implementation (with loops).
    
      Inputs have dimension D, there are C classes, and we operate on minibatches
      of N examples.
    
      Inputs:
      - W: A numpy array of shape (D, C) containing weights.
      - X: A numpy array of shape (N, D) containing a minibatch of data.
      - y: A numpy array of shape (N,) containing training labels; y[i] = c means
        that X[i] has label c, where 0 <= c < C.
      - reg: (float) regularization strength
    
      Returns a tuple of:
      - loss as single float
      - gradient with respect to weights W; an array of same shape as W
      """
      dW = np.zeros(W.shape) # initialize the gradient as zero
      # compute the loss and the gradient
      num_classes = W.shape[1]
      num_train = X.shape[0]
      loss = 0.0
      for i in xrange(num_train):
        scores = X[i].dot(W)
        correct_class_score = scores[y[i]]  # 选取正确的分数
        for j in xrange(num_classes):
          if j == y[i]:
            continue
          margin = scores[j] - correct_class_score + 1 # note delta = 1
          if margin > 0:
            loss += margin
            dW[:,y[i]] += -X[i,:].T
            dW[:,j] += X[i,:].T
            
    
      # Right now the loss is a sum over all training examples, but we want it
      # to be an average instead so we divide by num_train.
      loss /= num_train
    
      # Add regularization to the loss.
      loss += reg * np.sum(W * W)
      dW /= num_train
      dW += reg * W
      #############################################################################
      # TODO:                                                                     #
      # Compute the gradient of the loss function and store it dW.                #
      # Rather that first computing the loss and then computing the derivative,   #
      # it may be simpler to compute the derivative at the same time that the     #
      # loss is being computed. As a result you may need to modify some of the    #
      # code above to compute the gradient.                                       #
      #############################################################################
      return loss, dW
    

    检查numeric gradientanalytic gradient是否相同,结果如下:

    numerical: -21.154820 analytic: -21.154820, relative error: 2.156955e-11
    numerical: -15.646956 analytic: -15.646956, relative error: 1.701945e-12
    numerical: -12.570585 analytic: -12.570585, relative error: 1.765923e-11
    numerical: 1.132944 analytic: 1.132944, relative error: 1.340921e-10
    numerical: 6.988271 analytic: 6.988271, relative error: 4.883998e-11
    numerical: -5.636565 analytic: -5.636565, relative error: 3.185107e-11
    numerical: -19.290815 analytic: -19.290815, relative error: 1.324725e-11
    numerical: -39.458206 analytic: -39.458206, relative error: 1.499212e-12
    numerical: 29.654785 analytic: 29.654785, relative error: 7.468480e-12
    numerical: 8.850677 analytic: 8.850677, relative error: 1.820948e-11
    numerical: -1.873331 analytic: -1.869115, relative error: 1.126408e-03
    numerical: -11.970316 analytic: -11.965054, relative error: 2.198217e-04
    numerical: 27.541778 analytic: 27.547150, relative error: 9.752253e-05
    numerical: -13.284015 analytic: -13.294164, relative error: 3.818578e-04
    numerical: 17.315594 analytic: 17.306512, relative error: 2.622948e-04
    numerical: -11.626487 analytic: -11.632282, relative error: 2.491471e-04
    numerical: 44.386078 analytic: 44.385843, relative error: 2.647647e-06
    numerical: -15.492639 analytic: -15.492624, relative error: 5.021475e-07
    numerical: -19.645482 analytic: -19.651773, relative error: 1.600740e-04
    numerical: 7.485944 analytic: 7.491883, relative error: 3.965264e-04
    

    Inline Question 1

    It is possible that once in a while a dimension in the gradcheck will not match exactly. What could such a discrepancy be caused by? Is it a reason for concern? What is a simple example in one dimension where a gradient check could fail? Hint: the SVM loss function is not strictly speaking differentiable

    Your Answer: Maybe because SVM loss function is not strictly speaking differentiable. At original point(0,0), the funtion is not differentiable, so the gradient check could fail.

    svm_loss_vectorized

    def svm_loss_vectorized(W, X, y, reg):
      """
      Structured SVM loss function, vectorized implementation.
    
      Inputs and outputs are the same as svm_loss_naive.
      """
      loss = 0.0
      dW = np.zeros(W.shape) # initialize the gradient as zero
    
      #############################################################################
      # TODO:                                                                     #
      # Implement a vectorized version of the structured SVM loss, storing the    #
      # result in loss.                                                           #
      #############################################################################
      num_train = X.shape[0]
      scores = X.dot(W)
      correct_scores = scores[np.arange(num_train), y]
      # 一行五百个(500,)
      # arrange生成一个0-num_train的序列,步长为1
      correct_scores = np.reshape(correct_scores, (num_train, -1))
      # (500,1)
      margins = scores - correct_scores + 1
      margins = np.maximum(0, margins)
      margins[range(num_train), y] = 0
      loss += np.sum(margins) / num_train
      loss += reg * np.sum(W * W)
      #############################################################################
      #                             END OF YOUR CODE                              #
      #############################################################################
    
    
      #############################################################################
      # TODO:                                                                     #
      # Implement a vectorized version of the gradient for the structured SVM     #
      # loss, storing the result in dW.                                           #
      #                                                                           #
      # Hint: Instead of computing the gradient from scratch, it may be easier    #
      # to reuse some of the intermediate values that you used to compute the     #
      # loss.                                                                     #
      #############################################################################
      margins[margins > 0] = 1
      row_sum = np.sum(margins, axis = 1)
      print(row_sum)
      margins[np.arange(num_train), y] = -row_sum.T
      # 只有对应位的被设成-9之类的,其余还是1
      print(margins)
      dW = np.dot(X.T, margins)
      dW /= num_train
      dW += reg * W
      #############################################################################
      #                             END OF YOUR CODE                              #
      #############################################################################
    
      return loss, dW
    

    结果
    Naive loss: 9.101681e+00 computed in 0.174625s
    (500,)
    (500, 1)
    Vectorized loss: 9.101681e+00 computed in 0.000000s
    difference: -0.000000

    Stochastic Gradient Descent

      def train(self, X, y, learning_rate=1e-3, reg=1e-5, num_iters=100,
                batch_size=200, verbose=False):
        """
        Train this linear classifier using stochastic gradient descent.
        用随机梯度下降法训练
        Inputs:
        - X: A numpy array of shape (N, D) containing training data; there are N
          training samples each of dimension D.
        - y: A numpy array of shape (N,) containing training labels; y[i] = c
          means that X[i] has label 0 <= c < C for C classes.
        - learning_rate: (float) learning rate for optimization.
        - reg: (float) regularization strength.
        - num_iters: (integer) number of steps to take when optimizing
        - batch_size: (integer) number of training examples to use at each step.
        - verbose: (boolean) If true, print progress during optimization.
    
        Outputs:
        A list containing the value of the loss function at each training iteration.
        """
        num_train, dim = X.shape
        num_classes = np.max(y) + 1 # assume y takes values 0...K-1 where K is number of classes
        # 种类
        if self.W is None:
          # lazily initialize W
          self.W = 0.001 * np.random.randn(dim, num_classes)
    
        # Run stochastic gradient descent to optimize W
        loss_history = []
        for it in xrange(num_iters):
          X_batch = None
          y_batch = None
    
          #########################################################################
          # TODO:                                                                 #
          # Sample batch_size elements from the training data and their           #
          # corresponding labels to use in this round of gradient descent.        #
          # Store the data in X_batch and their corresponding labels in           #
          # y_batch; after sampling X_batch should have shape (dim, batch_size)   #
          # and y_batch should have shape (batch_size,)                           #
          #                                                                       #
          # Hint: Use np.random.choice to generate indices. Sampling with         #
          # replacement is faster than sampling without replacement.              #
          #########################################################################
          index = np.random.choice(num_train, batch_size)
          X_batch = X[index,:]
          y_batch = y[index]
          #########################################################################
          #                       END OF YOUR CODE                                #
          #########################################################################
    
          # evaluate loss and gradient
          loss, grad = self.loss(X_batch, y_batch, reg)
          loss_history.append(loss)
    
          # perform parameter update
          #########################################################################
          # TODO:                                                                 #
          # Update the weights using the gradient and the learning rate.          #
          #########################################################################
          self.W += -grad*learning_rate
          #########################################################################
          #                       END OF YOUR CODE                                #
          #########################################################################
    
          if verbose and it % 100 == 0:
            print('iteration %d / %d: loss %f' % (it, num_iters, loss))
    
        return loss_history
    

    loss图:


    loss图

    predict function

     def predict(self, X):
        """
        Use the trained weights of this linear classifier to predict labels for
        data points.
    
        Inputs:
        - X: A numpy array of shape (N, D) containing training data; there are N
          training samples each of dimension D.
    
        Returns:
        - y_pred: Predicted labels for the data in X. y_pred is a 1-dimensional
          array of length N, and each element is an integer giving the predicted
          class.
        """
        y_pred = np.zeros(X.shape[0])
        ###########################################################################
        # TODO:                                                                   #
        # Implement this method. Store the predicted labels in y_pred.            #
        ###########################################################################
        y_pred = np.argmax(X.dot(self.W),axis= 1)
        # argmax返回数组a中最大数的索引
        ###########################################################################
        #                           END OF YOUR CODE                              #
        ###########################################################################
       return y_pred
    

    结果
    training accuracy: 0.384122
    validation accuracy: 0.382000

    选择最好的超参数

    # Use the validation set to tune hyperparameters (regularization strength and
    # learning rate). You should experiment with different ranges for the learning
    # rates and regularization strengths; if you are careful you should be able to
    # get a classification accuracy of about 0.4 on the validation set.
    learning_rates = [1e-7, 5e-5]
    regularization_strengths = [2.5e4, 5e4]
    
    # results is dictionary mapping tuples of the form
    # (learning_rate, regularization_strength) to tuples of the form
    # (training_accuracy, validation_accuracy). The accuracy is simply the fraction
    # of data points that are correctly classified.
    results = {}
    best_val = -1   # The highest validation accuracy that we have seen so far.
    best_svm = None # The LinearSVM object that achieved the highest validation rate.
    
    ################################################################################
    # TODO:                                                                        #
    # Write code that chooses the best hyperparameters by tuning on the validation #
    # set. For each combination of hyperparameters, train a linear SVM on the      #
    # training set, compute its accuracy on the training and validation sets, and  #
    # store these numbers in the results dictionary. In addition, store the best   #
    # validation accuracy in best_val and the LinearSVM object that achieves this  #
    # accuracy in best_svm.                                                        #
    #                                                                              #
    # Hint: You should use a small value for num_iters as you develop your         #
    # validation code so that the SVMs don't take much time to train; once you are #
    # confident that your validation code works, you should rerun the validation   #
    # code with a larger value for num_iters.                                      #
    ################################################################################
    # 提示:num_iters先用较小的值,这样可以不用花太多时间在训练上,一旦确定了组合是奏效的,再调高num_iters的值
    for learning_rate in learning_rates:
        for regularization_strength in regularization_strengths:
            svm = LinearSVM()
            loss_hist = svm.train(X_train, y_train, learning_rate = learning_rate, reg = regularization_strength,
                          num_iters = 1500, verbose=True)
            y_train_pred = svm.predict(X_train)
            train_accuracy = np.mean(y_train_pred == y_train)
            y_val_pred = svm.predict(X_val)
            val_accuracy = np.mean(y_val == y_val_pred)
            results[(learning_rate, regularization_strength)] = [train_accuracy, val_accuracy]
            if val_accuracy > best_val:
                best_val = val_accuracy
                best_svm = svm
    ################################################################################
    #                              END OF YOUR CODE                                #
    ################################################################################
        
    # Print out results.
    for lr, reg in sorted(results):
        train_accuracy, val_accuracy = results[(lr, reg)]
        print('lr %e reg %e train accuracy: %f val accuracy: %f' % (
                    lr, reg, train_accuracy, val_accuracy))
        
    print('best validation accuracy achieved during cross-validation: %f' % best_val)
    

    结果
    lr 1.000000e-07 reg 2.500000e+04 train accuracy: 0.382837 val accuracy: 0.381000
    lr 1.000000e-07 reg 5.000000e+04 train accuracy: 0.368592 val accuracy: 0.380000
    lr 5.000000e-05 reg 2.500000e+04 train accuracy: 0.144918 val accuracy: 0.130000
    lr 5.000000e-05 reg 5.000000e+04 train accuracy: 0.058224 val accuracy: 0.075000
    best validation accuracy achieved during cross-validation: 0.381000
    画图结果

    准确率结果
    最好的超参在测试集上的结果为
    linear SVM on raw pixels final test set accuracy: 0.370000

    观察learned weights

    Inline question 2:

    Describe what your visualized SVM weights look like, and offer a brief explanation for why they look they way that they do.

    Your answer: :They look like obsure signals, which is because they learned all the pitures in the data set.

    相关文章

      网友评论

          本文标题:cs231n作业:Assignment1-SVM

          本文链接:https://www.haomeiwen.com/subject/fqtvaqtx.html