美文网首页特征变量选择
随机森林找分类marker | R

随机森林找分类marker | R

作者: kkkkkkang | 来源:发表于2021-08-28 21:27 被阅读0次

    metagenomics中,寻找区分两个类别的marker是很常见的分析。根据很多文章中的结果,摸索了一下怎么实现

    数据准备

    Otu为列名,添加一个分类列如status

    数据
    代码部分

    首先我定义了一个自己常用的主题

    my_theme <- function() {
        library(ggplot2)
        library(ggthemr)
        theme_set(theme_classic() +
                      theme(axis.text = element_text(size = 8, face = "bold"), #坐标轴标签大小,加粗
                            axis.title = element_text(size = 12, face = "bold"), #坐标轴标题大小,加粗
                            plot.margin = unit(rep(1, 4), "cm"), #边距,顺序:上右下左
                            panel.grid = element_blank())) #不要横向和纵向格子线
    }
    

    正儿八经开始画图

    setwd("D:/bioinfo/R learn")
    library(reshape2)
    library(randomForest)
    library(dplyr)
    library(ggplot2)
    library(magrittr)
    library(patchwork)
    my_theme()
    otu <- read.table("randomforest.txt", header = T, row.names = 1, sep = "\t")
    set.seed(123)
    nsamp <- floor(nrow(otu))
    # 随机选择70%数据作为训练集
    indexes <- sample(1:nrow(otu), size = nsamp*0.7)
    training <- otu[indexes,]
    training$Status <- factor(training$Status)
    validation <- otu[-indexes,]
    validation$Status <- factor(validation$Status)
    # 训练
    rf_classifier <- randomForest(Status ~ ., data=training, ntree=100, importance=TRUE)
    rf_classifier
    varImpPlot(rf_classifier)
    # 当然可以提取出来自己画图
    # 首先寻找合适个数的预测变量
    # 通过交叉验证来寻找
    otu_train.cv <- replicate(5, rfcv(training[-ncol(training)], 
                                      training$Status, 
                                      cv.fold = 10, step = 2), simplify = FALSE)
    otu_train.cv
    #提取验证结果绘图
    otu_train.cv.df <- data.frame(sapply(otu_train.cv, '[[', 'error.cv'))
    colnames(otu_train.cv.df) <- c("err1", "err2", "err3", "err4", "err5")
    otu_train.cv.df %<>% .[-nrow(.),] %>% mutate(errmean = rowMeans(.)) %>% mutate(num = as.numeric(rownames(.)))
    # 选择9个预测变量
    p1 <- ggplot() +
        geom_line(aes(x = otu_train.cv.df$num, y = otu_train.cv.df$err1), colour = 'grey', lwd = 1.5) +
        geom_line(aes(x = otu_train.cv.df$num, y = otu_train.cv.df$err2), colour = 'grey', lwd = 1.5) +
        geom_line(aes(x = otu_train.cv.df$num, y = otu_train.cv.df$err3), colour = 'grey', lwd = 1.5) +
        geom_line(aes(x = otu_train.cv.df$num, y = otu_train.cv.df$err4), colour = 'grey', lwd = 1.5) +
        geom_line(aes(x = otu_train.cv.df$num, y = otu_train.cv.df$err5), colour = 'grey', lwd = 1.5) +
        geom_line(aes(x = otu_train.cv.df$num, y = otu_train.cv.df$errmean), colour = 'black', lwd = 1.5) +
        geom_vline(xintercept = 9, colour='black', lwd=1, linetype="dashed") +
        labs(title=paste('Training set (n = ', length(indexes),')', sep = ''), 
             x='Number of classes ', y='Cross-validation error rate') + 
        coord_trans(x = "log2") +
        scale_x_continuous(breaks = c(1, 2, 5, 10, 20, 30, 50, 100, 140)) +
        annotate("text", x = 9, y = max(otu_train.cv.df$errmean), label=paste("optimal = ", 9, sep=""))
    # 选择前9个important feature画图
    imp <- importance(rf_classifier) %>% 
        data.frame() %>% 
        arrange(desc(MeanDecreaseAccuracy)) %>% 
        head(n = 9) %>% 
        select(3) %>%
        mutate(class = rownames(.)) %>% 
        mutate(phylum = sapply(strsplit(rownames(.), ".", fixed = TRUE), "[[",2))
    imp_long <- melt(imp, id.vars = c("class", "phylum")) %>% arrange(value)
    imp_long$class <- factor(imp_long$class, levels = imp_long$class)
    imp_long$phylum <- factor(imp_long$phylum)
    
    p2 <- ggplot(imp_long, aes(x= class, y = value, fill = phylum)) +
        geom_bar(stat= "identity") + 
        coord_flip() + 
        scale_fill_brewer(palette = "Paired")
    # 拼图
    p1+p2+plot_annotation(title = "Fig 1", tag_levels = "A")
    
    
    results

    Fig 1. A 部分代码参考了如下文章,如果用到,请正确引用别人的文章(这不是我的文章)
    ref: https://www.nature.com/articles/s41587-019-0104-4

    相关文章

      网友评论

        本文标题:随机森林找分类marker | R

        本文链接:https://www.haomeiwen.com/subject/frdiiltx.html