随机森林-R

作者: 灵妍 | 来源:发表于2018-03-23 20:16 被阅读4次

    这里与Python的区别在于R中有一种变量叫factor,是专门用来表示分类对象的,我们需要把分类结果转换成factor。
    另外,对于随机森林来说,决策树的数量并不是越多越好,且由于是随机的,每次的结果可能稍有不同。
    代码:

    # Random Forest Classification
    
    # Importing the dataset
    dataset = read.csv('Social_Network_Ads.csv')
    dataset = dataset[3:5]
    
    # Encoding the target feature as factor
    dataset$Purchased = factor(dataset$Purchased, levels = c(0, 1))
    
    # Splitting the dataset into the Training set and Test set
    # install.packages('caTools')
    library(caTools)
    set.seed(123)
    split = sample.split(dataset$Purchased, SplitRatio = 0.75)
    training_set = subset(dataset, split == TRUE)
    test_set = subset(dataset, split == FALSE)
    
    # Feature Scaling
    training_set[-3] = scale(training_set[-3])
    test_set[-3] = scale(test_set[-3])
    
    # Fitting Random Forest Classification to the Training set
    # install.packages('randomForest')
    library(randomForest)
    classifier = randomForest(x = training_set[-3],
                              y = training_set$Purchased,
                              ntree=10)
    
    # Predicting the Test set results
    y_pred = predict(classifier, newdata = test_set[-3])
    
    # Making the Confusion Matrix
    cm = table(test_set[, 3], y_pred)
    
    # Visualising the Training set results
    library(ElemStatLearn)
    set = training_set
    X1 = seq(min(set[, 1]) - 1, max(set[, 1]) + 1, by = 0.0075)
    X2 = seq(min(set[, 2]) - 1, max(set[, 2]) + 1, by = 0.0075)
    grid_set = expand.grid(X1, X2)
    colnames(grid_set) = c('Age', 'EstimatedSalary')
    y_grid = predict(classifier, newdata = grid_set)
    plot(set[, -3],
         main = 'Random Forest Classification (Training set)',
         xlab = 'Age', ylab = 'Estimated Salary',
         xlim = range(X1), ylim = range(X2))
    contour(X1, X2, matrix(as.numeric(y_grid), length(X1), length(X2)), add = TRUE)
    points(grid_set, pch = '.', col = ifelse(y_grid == 1, 'springgreen3', 'tomato'))
    points(set, pch = 21, bg = ifelse(set[, 3] == 1, 'green4', 'red3'))
    
    # Visualising the Test set results
    library(ElemStatLearn)
    set = test_set
    X1 = seq(min(set[, 1]) - 1, max(set[, 1]) + 1, by = 0.0075)
    X2 = seq(min(set[, 2]) - 1, max(set[, 2]) + 1, by = 0.0075)
    grid_set = expand.grid(X1, X2)
    colnames(grid_set) = c('Age', 'EstimatedSalary')
    y_grid = predict(classifier, newdata = grid_set)
    plot(set[, -3], main = 'Random Forest Classification (Test set)',
         xlab = 'Age', ylab = 'Estimated Salary',
         xlim = range(X1), ylim = range(X2))
    contour(X1, X2, matrix(as.numeric(y_grid), length(X1), length(X2)), add = TRUE)
    points(grid_set, pch = '.', col = ifelse(y_grid == 1, 'springgreen3', 'tomato'))
    points(set, pch = 21, bg = ifelse(set[, 3] == 1, 'green4', 'red3'))
    

    关键代码:
    dataset$Purchased = factor(dataset$Purchased, levels = c(0, 1))
    library(randomForest)
    classifier = randomForest(x = training_set[-3],
    y = training_set$Purchased,
    ntree=10)
    运行结果:


    测试集.PNG 训练集.PNG
    混淆矩阵.PNG
    对于这组数据,逻辑回归算法和线性SVM无法正确划分低龄高收入以及高龄低收入用户,决策树和随机森林过拟合,无法去除噪音点,只有高斯SVM以及朴素贝叶斯预测出平滑曲线,分类效果比较好

    相关文章

      网友评论

        本文标题:随机森林-R

        本文链接:https://www.haomeiwen.com/subject/pyzxcftx.html