美文网首页
分部积分的应用

分部积分的应用

作者: 洛玖言 | 来源:发表于2020-02-02 15:30 被阅读0次

    \displaystyle\int_0^1(1-x)^mx^n\text{d}x


    \text{B}(m+1,n+1)=\displaystyle\int_0^1(1-x)^mx^n\text{d}x

    \begin{aligned} &\int_0^1(1-x)^mx^n\text{d}x=\text{B}(m+1,n+1)\\ =&-\dfrac{1}{m+1}\int_0^1x^n\text{d}(1-x)^{m+1}\\ =&-\dfrac{1}{m+1}x^n(1-x)^{m+1}\bigg|_0^1+\dfrac{n}{m+1}\int_0^1x^{n-1}(1-x)^{m+1}\text{d}x\\ =&\dfrac{n}{m+1}\int_0^1x^{n-1}(1-x)(1-x)^m\text{d}x\\ =&\dfrac{n}{m+1}\int_0^1x^{n-1}(1-x)^m\text{d}x-\dfrac{n}{m+1}\int_0^1(1-x)^mx^n\text{d}x\\ =&\dfrac{n}{m+1}\left[\text{B}(m+1,n)-\text{B}(m+1,n+1)\right] \end{aligned}

    移项得

    \begin{aligned} \dfrac{n+m+1}{m+1}\text{B}(m+1,n+1)=\dfrac{n}{m+1}\text{B}(m+1,n) \end{aligned}

    因此有
    \begin{aligned} \int_0^1(1-x)^mx^n\text{d}x=\dfrac{n}{n+m+1}\int_0^1(1-x)^mx^{n-1}\text{d}x \end{aligned}

    继续用分部积分有

    \begin{aligned} &\int_0^1(1-x)^mx^{n-1}\text{d}x=\dfrac{n-1}{n+m}\int_0^1(1-x)^mx^{n-2}\text{d}x\\ &\int_0^1(1-x)^mx^{n-2}\text{d}x=\dfrac{n-2}{n+m-1}\int_0^1(1-x)^mx^{n-3}\text{d}x\\ &\cdots \end{aligned}

    得到
    \begin{aligned} \int_0^1(1-x)^mx^n\text{d}x=\dfrac{n(n-1)(n-2)\cdots3\cdot2\cdot1}{(m+n+1)(m+n)(m+n-1)\cdots(m+2)}\int_0^1(1-x)^m\text{d}x \end{aligned}


    \begin{aligned} \int_0^1(1-x)^m\text{d}x=-\dfrac{1}{m+1}(1-x)^{m+1}\bigg|_0^1=\dfrac{1}{m+1} \end{aligned}

    最后得到
    \begin{aligned} &\int_0^1(1-x)^mx^n\text{d}x\\ =&\dfrac{n(n-1)(n-2)\cdots3\cdot2\cdot1}{(m+n+1)(m+n)\cdots(m+2)(m+1)}\\ =&\dfrac{n(n-1)(n-2)\cdots3\cdot2\cdot1\cdot m(m-1)\cdots2\cdot1}{(m+n+1)(m+n)\cdots(m+2)(m+1)\cdot m\cdots2\cdot1}\\ =&\dfrac{m!n!}{(m+n+1)!}\\ =&\dfrac{\Gamma(m+1)\Gamma(n+1)}{\Gamma(m+n+2)} \end{aligned}

    更多有关 \Gamma 函数和 \Beta 函数可参见: Euler积分

    相关文章

      网友评论

          本文标题:分部积分的应用

          本文链接:https://www.haomeiwen.com/subject/fsjqxhtx.html