美文网首页
这些JDK8 新特性,我还是第一次听说

这些JDK8 新特性,我还是第一次听说

作者: 博学谷狂野架构师 | 来源:发表于2023-02-13 14:05 被阅读0次

    文章内容整理自 博学谷狂野架构师

    概述

    什么是函数式接口?简单来说就是只有一个抽象函数的接口。为了使得函数式接口的定义更加规范,java8 提供了@FunctionalInterface 注解告诉编译器在编译器去检查函数式接口的合法性,以便在编译器在编译出错时给出提示。为了更加规范定义函数接口,给出如下函数式接口定义规则:

    • 有且仅有一个抽象函数
    • 必须要有@FunctionalInterface 注解
    • 可以有默认方法

    可以看出函数式接口的编写定义非常简单,不知道大家有没有注意到,其实我们经常会用到函数式接口,如Runnable 接口,它就是一个函数式接口:

    COPY@FunctionalInterface
    public interface Runnable {
        /**
         * When an object implementing interface <code>Runnable</code> is used
         * to create a thread, starting the thread causes the object's
         * <code>run</code> method to be called in that separately executing
         * thread.
         * <p>
         * The general contract of the method <code>run</code> is that it may
         * take any action whatsoever.
         *
         * @see     java.lang.Thread#run()
         */
        public abstract void run();
    }
    

    过去我们会使用匿名内部类来实现线程的执行体:

    COPYnew Thread(new Runnable() {
                @Override
                public void run() {
                    System.out.println("Hello FunctionalInterface");
                }
            }).start();
    

    现在我们使用Lambda 表达式,这里函数式接口的使用没有体现函数式编程思想,这里输出字符到标准输出流中,产生了副作用,起到了简化代码的作用,当然还有装B。

    COPYnew Thread(()->{
               System.out.println("Hello FunctionalInterface");
           }).start();
    

    Java8 util.function 包下自带了43个函数式接口,大体分为以下几类:

    • Consumer 消费接口
    • Function 功能接口
    • Operator 操作接口
    • Predicate 断言接口
    • Supplier 生产接口

    其他接口都是在此基础上变形定制化罢了。

    函数式接口详细介绍

    这里只介绍最基础的函数式接口,至于它的变体只要明白了基础自然就能够明白

    Consumer

    消费者接口,就是用来消费数据的。

    COPY@FunctionalInterface
    public interface Consumer<T> {
    
        /**
         * Performs this operation on the given argument.
         *
         * @param t the input argument
         */
        void accept(T t);
    
        /**
         * Returns a composed {@code Consumer} that performs, in sequence, this
         * operation followed by the {@code after} operation. If performing either
         * operation throws an exception, it is relayed to the caller of the
         * composed operation.  If performing this operation throws an exception,
         * the {@code after} operation will not be performed.
         *
         * @param after the operation to perform after this operation
         * @return a composed {@code Consumer} that performs in sequence this
         * operation followed by the {@code after} operation
         * @throws NullPointerException if {@code after} is null
         */
        default Consumer<T> andThen(Consumer<? super T> after) {
            Objects.requireNonNull(after);
            return (T t) -> { accept(t); after.accept(t); };
        }
    }
    

    Consumer 接口中有accept 抽象方法,accept接受一个变量,也就是说你在使用这个函数式接口的时候,给你提供了数据,你只要接收使用就可以了;andThen 是一个默认方法,接受一个Consumer 类型,当你对一个数据使用一次还不够爽的时候,你还能再使用一次,当然你其实可以爽无数次,只要一直使用andThan方法。

    Function

    何为Function呢?比如电视机,给你带来精神上的愉悦,但是它需要用电啊,电视它把电转换成了你荷尔蒙,这就是Function,简单电说,Function 提供一种转换功能。

    COPY@FunctionalInterface
    public interface Function<T, R> {
    
        /**
         * Applies this function to the given argument.
         *
         * @param t the function argument
         * @return the function result
         */
        R apply(T t);
    
        /**
         * Returns a composed function that first applies the {@code before}
         * function to its input, and then applies this function to the result.
         * If evaluation of either function throws an exception, it is relayed to
         * the caller of the composed function.
         *
         * @param <V> the type of input to the {@code before} function, and to the
         *           composed function
         * @param before the function to apply before this function is applied
         * @return a composed function that first applies the {@code before}
         * function and then applies this function
         * @throws NullPointerException if before is null
         *
         * @see #andThen(Function)
         */
        default <V> Function<V, R> compose(Function<? super V, ? extends T> before) {
            Objects.requireNonNull(before);
            return (V v) -> apply(before.apply(v));
        }
    
        /**
         * Returns a composed function that first applies this function to
         * its input, and then applies the {@code after} function to the result.
         * If evaluation of either function throws an exception, it is relayed to
         * the caller of the composed function.
         *
         * @param <V> the type of output of the {@code after} function, and of the
         *           composed function
         * @param after the function to apply after this function is applied
         * @return a composed function that first applies this function and then
         * applies the {@code after} function
         * @throws NullPointerException if after is null
         *
         * @see #compose(Function)
         */
        default <V> Function<T, V> andThen(Function<? super R, ? extends V> after) {
            Objects.requireNonNull(after);
            return (T t) -> after.apply(apply(t));
        }
    
        /**
         * Returns a function that always returns its input argument.
         *
         * @param <T> the type of the input and output objects to the function
         * @return a function that always returns its input argument
         */
        static <T> Function<T, T> identity() {
            return t -> t;
        }
    }
    

    Function 接口 最主要的就是apply 函数,apply 接受T类型数据并返回R类型数据,就是将T类型的数据转换成R类型的数据,它还提供了compose、andThen、identity 三个默认方法,compose 接受一个Function,andThen也同样接受一个Function,这里的andThen 与Consumer 的andThen 类似,在apply之后在apply一遍,compose 则与之相反,在apply之前先apply(这两个apply具体处理内容一般是不同的),identity 起到了类似海关的作用,外国人想要运货进来,总得交点税吧,然后货物才能安全进入中国市场,当然了想不想收税还是你说了算的。

    Operator

    可以简单理解成算术中的各种运算操作,当然不仅仅是运算这么简单,因为它只定义了运算这个定义,但至于运算成什么样你说了算。由于没有最基础的Operator,这里将通过 BinaryOperator、IntBinaryOperator来理解Operator 函数式接口,先从简单的IntBinaryOperator开始。

    IntBinaryOperator

    从名字可以知道,这是一个二元操作,并且是Int 类型的二元操作,那么这个接口可以做什么呢,除了加减乘除,还可以可以实现平方(两个相同int 数操作起来不就是平方吗),还是先看看它的定义吧:

    @FunctionalInterface
    public interface IntBinaryOperator {
    
        /**
         * Applies this operator to the given operands.
         *
         * @param left the first operand
         * @param right the second operand
         * @return the operator result
         */
        int applyAsInt(int left, int right);
    }
    

    IntBinaryOperator 接口内只有一个applyAsInt 方法,其接收两个int 类型的参数,并返回一个int 类型的结果,其实这个跟Function 接口的apply 有点像,但是这里限定了,只能是int类型。

    BinaryOperator

    BinaryOperator 二元操作,看起来它和IntBinaryOperator 是父子关系,实际上这两者没有半点关系,但他们在功能上还是有相似之处的:

    COPY@FunctionalInterface
    public interface BinaryOperator<T> extends BiFunction<T,T,T> {
        /**
         * Returns a {@link BinaryOperator} which returns the lesser of two elements
         * according to the specified {@code Comparator}.
         *
         * @param <T> the type of the input arguments of the comparator
         * @param comparator a {@code Comparator} for comparing the two values
         * @return a {@code BinaryOperator} which returns the lesser of its operands,
         *         according to the supplied {@code Comparator}
         * @throws NullPointerException if the argument is null
         */
        public static <T> BinaryOperator<T> minBy(Comparator<? super T> comparator) {
            Objects.requireNonNull(comparator);
            return (a, b) -> comparator.compare(a, b) <= 0 ? a : b;
        }
    
        /**
         * Returns a {@link BinaryOperator} which returns the greater of two elements
         * according to the specified {@code Comparator}.
         *
         * @param <T> the type of the input arguments of the comparator
         * @param comparator a {@code Comparator} for comparing the two values
         * @return a {@code BinaryOperator} which returns the greater of its operands,
         *         according to the supplied {@code Comparator}
         * @throws NullPointerException if the argument is null
         */
        public static <T> BinaryOperator<T> maxBy(Comparator<? super T> comparator) {
            Objects.requireNonNull(comparator);
            return (a, b) -> comparator.compare(a, b) >= 0 ? a : b;
        }
    }
    

    BinaryOperator 是 BiFunction 生的,而IntBinaryOperator 是从石头里蹦出来的,BinaryOperator 自身定义了minBy、maxBy默认方法,并且参数都是Comparator,就是根据传入的比较器的比较规则找出最小最大的数据。

    Predicate

    断言、判断,对输入的数据根据某种标准进行评判,最终返回boolean值:

    COPY@FunctionalInterface
    public interface Predicate<T> {
    
        /**
         * Evaluates this predicate on the given argument.
         *
         * @param t the input argument
         * @return {@code true} if the input argument matches the predicate,
         * otherwise {@code false}
         */
        boolean test(T t);
    
        /**
         * Returns a composed predicate that represents a short-circuiting logical
         * AND of this predicate and another.  When evaluating the composed
         * predicate, if this predicate is {@code false}, then the {@code other}
         * predicate is not evaluated.
         *
         * <p>Any exceptions thrown during evaluation of either predicate are relayed
         * to the caller; if evaluation of this predicate throws an exception, the
         * {@code other} predicate will not be evaluated.
         *
         * @param other a predicate that will be logically-ANDed with this
         *              predicate
         * @return a composed predicate that represents the short-circuiting logical
         * AND of this predicate and the {@code other} predicate
         * @throws NullPointerException if other is null
         */
        default Predicate<T> and(Predicate<? super T> other) {
            Objects.requireNonNull(other);
            return (t) -> test(t) && other.test(t);
        }
    
        /**
         * Returns a predicate that represents the logical negation of this
         * predicate.
         *
         * @return a predicate that represents the logical negation of this
         * predicate
         */
        default Predicate<T> negate() {
            return (t) -> !test(t);
        }
    
        /**
         * Returns a composed predicate that represents a short-circuiting logical
         * OR of this predicate and another.  When evaluating the composed
         * predicate, if this predicate is {@code true}, then the {@code other}
         * predicate is not evaluated.
         *
         * <p>Any exceptions thrown during evaluation of either predicate are relayed
         * to the caller; if evaluation of this predicate throws an exception, the
         * {@code other} predicate will not be evaluated.
         *
         * @param other a predicate that will be logically-ORed with this
         *              predicate
         * @return a composed predicate that represents the short-circuiting logical
         * OR of this predicate and the {@code other} predicate
         * @throws NullPointerException if other is null
         */
        default Predicate<T> or(Predicate<? super T> other) {
            Objects.requireNonNull(other);
            return (t) -> test(t) || other.test(t);
        }
    
        /**
         * Returns a predicate that tests if two arguments are equal according
         * to {@link Objects#equals(Object, Object)}.
         *
         * @param <T> the type of arguments to the predicate
         * @param targetRef the object reference with which to compare for equality,
         *               which may be {@code null}
         * @return a predicate that tests if two arguments are equal according
         * to {@link Objects#equals(Object, Object)}
         */
        static <T> Predicate<T> isEqual(Object targetRef) {
            return (null == targetRef)
                    ? Objects::isNull
                    : object -> targetRef.equals(object);
        }
    }
    

    Predicate的test 接收T类型的数据,返回 boolean 类型,即对数据进行某种规则的评判,如果符合则返回true,否则返回false;Predicate接口还提供了 and、negate、or,与 取反 或等,isEqual 判断两个参数是否相等等默认函数。

    Supplier

    生产、提供数据:

    COPY@FunctionalInterface
    public interface Supplier<T> {
    
        /**
         * Gets a result.
         *
         * @return a result
         */
        T get();
    }
    

    非常easy,get方法返回一个T类数据,可以提供重复的数据,或者随机种子都可以,就这么简单。

    函数式接口实战

    Consumer

    Consumer 用的太多了,不想说太多,如下:

    COPYpublic class Main {
        public static void main(String[] args) {
          Stream.of(1,2,3,4,5,6)
                    .forEach(integer -> System.out.println(integer)); //输出1,2,3,4,5,6
        }
    }
    

    这里使用标准输出,还是产生了副作用,但是这种程度是可以允许的

    Function

    转换,将字符串转成长度

    COPYpublic class Main {
        public static void main(String[] args) {
           Stream.of("hello","FunctionalInterface")
                    .map(e->e.length())
                    .forEach(System.out::println);
        }
    }
    

    运算

    COPYpublic class FunctionTest {
    
        public static void main(String[] args) {
    
             public static void main(String[] args) {
    
            Function<Integer, Integer> square = integer -> integer * integer; //定义平方运算
    
            List<Integer> list = new ArrayList<>();
            list.add(1);
            list.add(2);
            list.add(3);
            list.add(4);
    
    
            list.stream()
                    .map(square.andThen(square)) //四次方
                    .forEach(System.out::println);
    
            System.out.println("------");
    
            list.stream()
                    .map(square.compose(e -> e - 1)) //减一再平方
                    .forEach(System.out::println);
    
            System.out.println("------");
    
            list.stream().map(square.andThen(square.compose(e->e/2))) //先平方然后除2再平方
                    .forEach(System.out::println);
    
        }
    }
    

    结果如下

    COPY1
    16
    81
    256
    ------
    0
    1
    4
    9
    ------
    0
    4
    16
    64
    

    Operator

    BinaryOperator

    这里实现找最大值:

    COPYpublic class BinaryOperatorTest {
    
        public static void main(String[] args) {
    
            Stream.of(2,4,5,6,7,1)
                    .reduce(BinaryOperator.maxBy(Comparator.comparingInt(Integer::intValue))).ifPresent(System.out::println);
    
        }
    }
    
    IntOperator

    这里实现累加功能:

    COPYpublic class BinaryOperatorTest {
    
        public static void main(String[] args) {
            IntBinaryOperator intBinaryOperator = (e1, e2)->e1+e2; //定义求和二元操作
            IntStream.of(2,4,5,6,7,1)
                    .reduce(intBinaryOperator).ifPresent(System.out::println);
        }
    }
    

    Predicate

    筛选出大于0最小的两个数

    COPYpublic class Main {
    
        public static void main(String[] args) {
            IntStream.of(200,45,89,10,-200,78,94)
                    .filter(e->e>0) //过滤小于0的数
                    .sorted() //自然顺序排序
                    .limit(2) //取前两个
                    .forEach(System.out::println);
        }
    }
    

    Supplier

    这里一直生产2这个数字,为了能停下来,使用limit

    COPYpublic class Main {
    
        public static void main(String[] args) {
            Stream.generate(()->2)
                    .limit(10)
                    .forEach(System.out::println);
        }
    }
    

    输出结果

    COPY2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    

    总结

    Java8的Stream 基本上都是使用util.function包下的函数式接口来实现函数式编程的,而函数式接口也就只分为 Function、Operator、Consumer、Predicate、Supplier 这五大类,只要能理解掌握最基础的五大类用法,其他变种也能触类旁通。

    本文由传智教育博学谷狂野架构师教研团队发布。

    如果本文对您有帮助,欢迎关注点赞;如果您有任何建议也可留言评论私信,您的支持是我坚持创作的动力。

    转载请注明出处!

    相关文章

      网友评论

          本文标题:这些JDK8 新特性,我还是第一次听说

          本文链接:https://www.haomeiwen.com/subject/fsojkdtx.html