题目描述
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
思路
由于只能通过相邻的结点,就好像一棵完全二叉树,找到完全二叉树最小的路径我们用递归的方法可以这样做:选择左子节点和右子节点中最小的与当前值相加,再往上,层做同样的事。换成当前场景也是一样,我们可以从最底层自底向上去更新,最终到跟节点的值就是路径最小值,更新过程如下:
[2], [2],
[3,4], [3, 4], [2],
[6,5,7], ==> [7, 6, 10] ==> [9, 10] ==> [11]
[4,1,8,3]
代码
import java.util.ArrayList;
public class Solution {
public int minimumTotal(ArrayList<ArrayList<Integer>> triangle) {
int len = triangle.size();
for (int i=len-2; i>=0; i--){
for (int j=0; j<=i; j++){
triangle.get(i).set(j, triangle.get(i).get(j) + Math.min(triangle.get(i+1).get(j), triangle.get(i+1).get(j+1)));
}
}
return triangle.get(0).get(0);
}
}
网友评论