美文网首页
Android消息机制

Android消息机制

作者: 胡二囧 | 来源:发表于2018-08-03 18:16 被阅读0次

    从开发的角度讲,Handler是Android消息机制的上层接口,这使得在开发中只需要和Handler交互即可。这使得在开发中只需要和Handler交互即可。Handler的使用过程很简单,通过它可以轻松地将一个任务切换到Handler所在的线程中去执行。很多人认为Handler的作用是更新UI,这的确没错,但是更新UI仅仅是Handler的一个特殊使用场景。具体如下:

    有时候需要在子线程中进行耗时的I/O操作,可能是读取文件或者访问网络等,当耗时操作完成以后可能需要在UI上做一些改变,由于Android开发规范的限制,我们并不能在子线程中访问UI控件,否则就会出发异常,这个时候通过Handler就可以将更新UI的操作切换到主线程中执行。Handler并不是专门用于更新UI的,它只是常常被开发者用来更新UI。

    Android的消息机制主要是指Handler的运行机制,Handler的运行需要底层MessageQueue和Looper的支撑。MessageQueue是消息队列,它的内部存储了一组消息,以队列的形式对外提供插入和删除的工作。虽然叫消息队列,但是它的内部存储结构并不是真正的队列,而是采用单链表的数据结构来存储消息列表。Looper翻译为循环,在这里可以理解为消息循环,由于MessageQueue只是一个消息的存储单元,它不能去处理消息,而Looper就填补了这个功能。Looper会以无限循环的形式去查找是否有新的消息,如果有就处理消息,否则就一直等待着。Looper中还有一个特殊的概念,那就是ThreadLocal,ThreadLocal并不是线程,它的作用是可以在每个线程中储存数据。我们知道,Handler创建的时候回采用当前线程的Looper来构造消息循环系统,那么Handler内部如何获取当前线程的Looper呢?这里就用到了ThreadLocal,ThreadLocal可以在不同的线程中互不干扰的存储并提供数据,通过ThreadLocal可以轻松获取当前每个线程的Looper。当然需要注意的是,线程是默认没有Looper的,如果需要使用Handler就必须为线程创建Looper。

    系统为什么不允许在子线程中访问UI呢?这是因为Android的UI控件不是线程安全的,如果在多线程中并发访问可能会导致UI控件处于不可预期的状态,那为什么不对UI控件的访问加上锁机制呢?缺点有两个:

    • 首先加上锁机制会让UI访问逻辑变得复杂;
    • 其次锁机制会降低UI访问的效率,因为锁机制会阻塞某系线程的执行。

    Handler创建完毕后,这个时候其内部的Looper以及MessageQueue就可以和Handler一起协同工作了,然后通过Handler的post方法将一个Runnable投递到Handler内部的Looper中处理,也可以通过Handler的send方法发送一个消息,这个消息同样会在Looper中处理。其实post方法最终也是通过send方法来完成的。接下来主要来看一下send方法的工作过程。当Handler的send方法被调用时,它会代用MessageQueue的enqueueMessage方法将这个消息放入消息队列中,然后Looper发现有新消息到来时,就会处理这个消息,最终消息中的Runnable或者Handler的handleMessage方法就会被调用。注意Looper是运行在创建Handler所在的线程中的,这样一来Handler中的业务逻辑就被切换到创建Handler所在的线程中去执行了。

    ThreadLocal的工作原理

    ThreadLocal是一个线程内部的数据存储类,通过它可以在指定的线程中储存数据,数据存储后只有在指定线程中可以获得存储的数据,对于其他线程来说则无法获取到数据。在日常开发中用到ThreadLocal的地方较少,但是在某种特殊场景下,通过ThreadLocal可以轻松实现一些看起来很复杂的功能,比如Looper、ActivityThread以及AMS中都用到了ThreadLocal。一般来说,当某些数据是以线程为作用域并且不同线程具有不同的数据副本的时候,就可以考虑采用ThreadLocal,比如对于Handler来说,它需要获取当前线程的Looper,很显然Looper的作用域就是线程并且不同线程具有不同的ThreadLocal,那么系统就必须提供一个全局的哈希表供Handler查找指定线程的Looper,这样一来就必须提供一个类似LooperManager的类,但是系统并没有这么做而是选择了ThreadLocal,这就是ThreadLocal的好处。

    例如:

    private ThreadLocal<Boolean> threadLocal = new InheritableThreadLocal<>();
    
    protected void onCreate(Bundle savedInstanceState) {
        threadLocal.set(true);
        Log.i("MainThread threadLocal ", threadLocal.get() + "");
        
        new Thread("Thread#1") {
            @Override
            public void run() {
                super.run();
                threadLocal.set(false);
                Log.i("Thread#1 threadLocal ", threadLocal.get() + "");
            }
        }.start();
        
        new Thread("Thread#2") {
            @Override
            public void run() {
                super.run();
                Log.i("Thread#2 threadLocal ", threadLocal.get() + "");
            }
        }.start();
    }
    

    上面代码输出的结果是

    I/MainThread threadLocal: true
    I/Thread#1 threadLocal: false
    I/Thread#2 threadLocal: true
    

    我们可以看到,虽然不同的线程中访问的是同一个ThreadLocal对象,但是它们通过ThreadLocal获取到的值却是不一样的,这就是ThreadLocal的奇妙之处,这是因为不通线程访问的ThreadLocal的get方法,ThreadLocal内部会从各自的线程中取出一个数组,然后再从数组中根据当前ThreadLocal的索引去查找出对应的value值。很显然,不同的线程中的数组是不同的,这就是为什么通过ThreadLocal可以在不同的线程中维护一套数据的副本并且彼此互不干扰。

    对ThreadLocal的使用方法和工作过程做了介绍后,下面分析ThreadLocal的内部实现,ThreadLocal是一个泛型类,它的定义为public class ThreadLocal<T>,只要弄清楚ThreadLocal的get和set方法就可以明白它的工作原理。

        public void set(T value) {
            Thread t = Thread.currentThread();
            ThreadLocalMap map = getMap(t);
            if (map != null)
                map.set(this, value);
            else
                createMap(t, value);
        }
    
        private void set(ThreadLocal<?> key, Object value) {
    
            // We don't use a fast path as with get() because it is at
            // least as common to use set() to create new entries as
            // it is to replace existing ones, in which case, a fast
            // path would fail more often than not.
    
            Entry[] tab = table;
            int len = tab.length;
            int i = key.threadLocalHashCode & (len-1);
            
            for (Entry e = tab[i];
                e != null;
                e = tab[i = nextIndex(i, len)]) {
                ThreadLocal<?> k = e.get();
    
                if (k == key) {
                    e.value = value;
                    return;
                }
    
                if (k == null) {
                    replaceStaleEntry(key, value, i);
                    return;
                }
            }
    
            tab[i] = new Entry(key, value);
            int sz = ++size;
            if (!cleanSomeSlots(i, sz) && sz >= threshold)
                rehash();
        }
    

    ThreadLocal的值在table数组中的存储位置总是为ThreadLocal的reference字段所标识的对象的下一个位置。比如ThreadLocal的reference对象在table数组中的索引为index,那么ThreadLocal的值在table数组中的索引就是index+1。最终ThreadLocal的值将会被存放在table数组中:table[index+1]=value;

        public T get() {
            Thread t = Thread.currentThread();
            ThreadLocalMap map = getMap(t);
            if (map != null) {
                ThreadLocalMap.Entry e = map.getEntry(this);
                if (e != null) {
                    @SuppressWarnings("unchecked")
                    T result = (T)e.value;
                    return result;
                }
            }
            return setInitialValue();
        }
        
        private T setInitialValue() {
            T value = initialValue();
            Thread t = Thread.currentThread();
            ThreadLocalMap map = getMap(t);
            if (map != null)
                map.set(this, value);
            else
                createMap(t, value);
            return value;
        }
    

    消息队里工作原理

    MessageQueue主要包含两个操作,插入和读取,读取操作本身就伴随着删除操作,插入和读取对应的方法分别是enqueueMessage和next,其中enqueueMessage的作用是往消息队列插入一条消息。尽管MessageQueue叫消息队列,但是它的内部并不是一个队列,实际上它是一个单链表的数据结构来维护的消息队列,单链表在插入和删除上比较有优势。

        boolean enqueueMessage(Message msg, long when) {
            if (msg.target == null) {
                throw new IllegalArgumentException("Message must have a target.");
            }
            if (msg.isInUse()) {
                throw new IllegalStateException(msg + " This message is already in use.");
            }
    
            synchronized (this) {
                if (mQuitting) {
                    IllegalStateException e = new IllegalStateException(
                            msg.target + " sending message to a Handler on a dead thread");
                    Log.w(TAG, e.getMessage(), e);
                    msg.recycle();
                    return false;
                }
    
                msg.markInUse();
                msg.when = when;
                Message p = mMessages;
                boolean needWake;
                if (p == null || when == 0 || when < p.when) {
                    // New head, wake up the event queue if blocked.
                    msg.next = p;
                    mMessages = msg;
                    needWake = mBlocked;
                } else {
                    // Inserted within the middle of the queue.  Usually we don't have to wake
                    // up the event queue unless there is a barrier at the head of the queue
                    // and the message is the earliest asynchronous message in the queue.
                    needWake = mBlocked && p.target == null && msg.isAsynchronous();
                    Message prev;
                    for (;;) {
                        prev = p;
                        p = p.next;
                        if (p == null || when < p.when) {
                            break;
                        }
                        if (needWake && p.isAsynchronous()) {
                            needWake = false;
                        }
                    }
                    msg.next = p; // invariant: p == prev.next
                    prev.next = msg;
                }
    
                // We can assume mPtr != 0 because mQuitting is false.
                if (needWake) {
                    nativeWake(mPtr);
                }
            }
            return true;
        }
    
    
        Message next() {
            // Return here if the message loop has already quit and been disposed.
            // This can happen if the application tries to restart a looper after quit
            // which is not supported.
            final long ptr = mPtr;
            if (ptr == 0) {
                return null;
            }
    
            int pendingIdleHandlerCount = -1; // -1 only during first iteration
            int nextPollTimeoutMillis = 0;
            for (;;) {
                if (nextPollTimeoutMillis != 0) {
                    Binder.flushPendingCommands();
                }
    
                nativePollOnce(ptr, nextPollTimeoutMillis);
    
                synchronized (this) {
                    // Try to retrieve the next message.  Return if found.
                    final long now = SystemClock.uptimeMillis();
                    Message prevMsg = null;
                    Message msg = mMessages;
                    if (msg != null && msg.target == null) {
                        // Stalled by a barrier.  Find the next asynchronous message in the queue.
                        do {
                            prevMsg = msg;
                            msg = msg.next;
                        } while (msg != null && !msg.isAsynchronous());
                    }
                    if (msg != null) {
                        if (now < msg.when) {
                            // Next message is not ready.  Set a timeout to wake up when it is ready.
                            nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                        } else {
                            // Got a message.
                            mBlocked = false;
                            if (prevMsg != null) {
                                prevMsg.next = msg.next;
                            } else {
                                mMessages = msg.next;
                            }
                            msg.next = null;
                            if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                            msg.markInUse();
                            return msg;
                        }
                    } else {
                        // No more messages.
                        nextPollTimeoutMillis = -1;
                    }
    
                    // Process the quit message now that all pending messages have been handled.
                    if (mQuitting) {
                        dispose();
                        return null;
                    }
    
                    // If first time idle, then get the number of idlers to run.
                    // Idle handles only run if the queue is empty or if the first message
                    // in the queue (possibly a barrier) is due to be handled in the future.
                    if (pendingIdleHandlerCount < 0
                            && (mMessages == null || now < mMessages.when)) {
                        pendingIdleHandlerCount = mIdleHandlers.size();
                    }
                    if (pendingIdleHandlerCount <= 0) {
                        // No idle handlers to run.  Loop and wait some more.
                        mBlocked = true;
                        continue;
                    }
    
                    if (mPendingIdleHandlers == null) {
                        mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                    }
                    mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
                }
    
                // Run the idle handlers.
                // We only ever reach this code block during the first iteration.
                for (int i = 0; i < pendingIdleHandlerCount; i++) {
                    final IdleHandler idler = mPendingIdleHandlers[i];
                    mPendingIdleHandlers[i] = null; // release the reference to the handler
    
                    boolean keep = false;
                    try {
                        keep = idler.queueIdle();
                    } catch (Throwable t) {
                        Log.wtf(TAG, "IdleHandler threw exception", t);
                    }
    
                    if (!keep) {
                        synchronized (this) {
                            mIdleHandlers.remove(idler);
                        }
                    }
                }
    
                // Reset the idle handler count to 0 so we do not run them again.
                pendingIdleHandlerCount = 0;
    
                // While calling an idle handler, a new message could have been delivered
                // so go back and look again for a pending message without waiting.
                nextPollTimeoutMillis = 0;
            }
        }
    

    可以发现next方法是一个无线循环的方法,如果消息队列中没有消息,那么next方法会一直阻塞在这里,当有新消息到来时,next方法会返回这条消息并将其从单链表中移除。

    Looper工作原理

    Looper在Android的消息机制中扮演着消息循环的角色,具体来讲就是它会不停地从MessageQueue中查看是否有新消息,如果有新消息就会立刻处理,否则就一直阻塞在那里。首先看下构造方法:

    private Looper(boolean quitAllowed) {
        mQueue = new MessageQueue(quitAllowed);
        mThread = Thread.currentThread();
    }
    

    我们知道,Handler的工作需要Looper,没有Looper的线程就会报错,那么如何为一个线程创建Looper呢?使用Looper.prepare(),接着需要调用Looper.loop();Looper除了prepare方法外,还提供了prepareMainLooper方法,这个方法主要是给主线程也就是ActivityThread创建Looper使用的,其本质也是通过prepare方法来实现的。由于主线程的Looper比较特殊,所以Looper提供了一个getMainLooper方法,通过它可以在任何地方获取到主线程的Looper。Looper也是可以退出的,Looperr提供了quit和quitSafely来退出一个Looper。Looper退出后,通过Handler发送的消息会是失败,这个时候Handler的send方法会返回false。在子线程中,如果手动为其创建了Looper,那么在所有的事情完成以后应该调用quit方法来终止消息循环,否则这个子线程会一直处于等待状态,如果退出Looper以后,这个线程就会立刻停止。

        public static void loop() {
            final Looper me = myLooper();
            if (me == null) {
                throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
            }
            final MessageQueue queue = me.mQueue;
    
            // Make sure the identity of this thread is that of the local process,
            // and keep track of what that identity token actually is.
            Binder.clearCallingIdentity();
            final long ident = Binder.clearCallingIdentity();
    
            for (;;) {
                Message msg = queue.next(); // might block
                if (msg == null) {
                    // No message indicates that the message queue is quitting.
                    return;
                }
    
                // This must be in a local variable, in case a UI event sets the logger
                final Printer logging = me.mLogging;
                if (logging != null) {
                    logging.println(">>>>> Dispatching to " + msg.target + " " +
                            msg.callback + ": " + msg.what);
                }
    
                final long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
    
                final long traceTag = me.mTraceTag;
                if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
                    Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
                }
                final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
                final long end;
                try {
                    msg.target.dispatchMessage(msg);
                    end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
                } finally {
                    if (traceTag != 0) {
                        Trace.traceEnd(traceTag);
                    }
                }
                if (slowDispatchThresholdMs > 0) {
                    final long time = end - start;
                    if (time > slowDispatchThresholdMs) {
                        Slog.w(TAG, "Dispatch took " + time + "ms on "
                                + Thread.currentThread().getName() + ", h=" +
                                msg.target + " cb=" + msg.callback + " msg=" + msg.what);
                    }
                }
    
                if (logging != null) {
                    logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
                }
    
                // Make sure that during the course of dispatching the
                // identity of the thread wasn't corrupted.
                final long newIdent = Binder.clearCallingIdentity();
                if (ident != newIdent) {
                    Log.wtf(TAG, "Thread identity changed from 0x"
                            + Long.toHexString(ident) + " to 0x"
                            + Long.toHexString(newIdent) + " while dispatching to "
                            + msg.target.getClass().getName() + " "
                            + msg.callback + " what=" + msg.what);
                }
    
                msg.recycleUnchecked();
            }
        }
    

    Looper的loop方法的工作过程也比较好理解,loop方法是一个死循环,唯一可以跳出循环的方式是MessageQueue的next方法返回了null,当Looper的quit方法被调用时,Looper就会调用MessageQueue的quit或者quitSafely方法来通知消息队列退出,否则loop方法会永远循环下去。loop方法会调用MessageQueue的next方法来获取新消息,而next是一个阻塞操作,当没有消息时,next方法会一直阻塞在哪里,这也导致loop方法一直阻塞在那里。如果MessageQueue的next方法返回了新消息爱,Looper就会处理这条消息:msg.target.dispatchMessage(msg),这里的msg.target是发送这条消息的Handler对象,这也Handler发送的消息最终又交给dispatchMessage方法来处理了。但是这里不同的是,Handler的dispatchMessage方法是在创建Handler时所使用的Looper中执行的,这样就成功的将代码逻辑切换到指定的线程中去执行了。

    主线程的消息循环

    Android的主线程是ActivityThread,主线程的入口方法是main,在main方法中系统会通过Looper.prepareMainLooper()来创建主线程的Looper以及MessageQueue,并通过Looper.loop()来开启主线程的消息循环:

        public static void main(String[] args) {
            SamplingProfilerIntegration.start();
    
            // CloseGuard defaults to true and can be quite spammy.  We
            // disable it here, but selectively enable it later (via
            // StrictMode) on debug builds, but using DropBox, not logs.
            CloseGuard.setEnabled(false);
    
            Environment.initForCurrentUser();
    
            // Set the reporter for event logging in libcore
            EventLogger.setReporter(new EventLoggingReporter());
    
            Security.addProvider(new AndroidKeyStoreProvider());
    
            // Make sure TrustedCertificateStore looks in the right place for CA certificates
            final File configDir = Environment.getUserConfigDirectory(UserHandle.myUserId());
            TrustedCertificateStore.setDefaultUserDirectory(configDir);
    
            Process.setArgV0("<pre-initialized>");
    
            Looper.prepareMainLooper();
    
            ActivityThread thread = new ActivityThread();
            thread.attach(false);
    
            if (sMainThreadHandler == null) {
                sMainThreadHandler = thread.getHandler();
            }
    
            AsyncTask.init();
    
            if (false) {
                Looper.myLooper().setMessageLogging(new
                        LogPrinter(Log.DEBUG, "ActivityThread"));
            }
    
            Looper.loop();
    
            throw new RuntimeException("Main thread loop unexpectedly exited");
        }
    

    主线程的消息循环开始以后,ActivityThread还需要一个Handler来和消息队列进行交互,这个Handler就是ActivityThread.H,它的内部定义了一组消息类型,主要包含了四大组件的启动和停止等过程。

    ActivityThread通过ApplicationThread和AMS进行进程间通信,AMS以进程间通信的方式完成ActivityThread的请求后会回调ApplicationThread中的Binder方法,然后ApplicationThread会向H发送消息,H收到消息后会将ApplicationThread中的逻辑切换到ActivityThread中去执行,即切换到主线程中去执行,这个过程就是主线程的消息循环模型。

    相关文章

      网友评论

          本文标题:Android消息机制

          本文链接:https://www.haomeiwen.com/subject/fueuvftx.html