“大牛我要问”栏目推出一段时间后,阿里妹收到不少童鞋的来信,其中以职业发展、技术成长的困惑居多。
今天阿里妹选择了一个颇具有代表性的问题:关于目前大热的AI入门学习,希望能帮助有同样问题的童鞋解惑指路。
来信问题:25岁Java工程师如何转型学习AI?
我是一名25岁的Java开发工程师。本科学习的专业是信息与计算科学(数学专业),因为对计算机方面感兴趣,之后培训学习了Java,所以现在从事Java开发。目前就是在电商公司开发一些系统。
我对人工智能非常感兴趣,对数学的兴趣也从未减弱。人工智能设计的学习材料很多,像我这样的状况,如果想要转型以后从事这方面的工作,具体应该学习些什么?
阿里技术童鞋“以均”回信:
首先,我想聊聊为何深度学习最近这么火。
外行所见的是2016年AlphaGo 4比1 战胜李世石,掀起了一波AI热潮,DeepMind背后所用的深度学习一时间火得不得了。其实在内行看来,AlphaGo对阵李世石的结果是毫无悬念的,真正的突破在几年前就发生了。
2012年,Gefferey Hinton的学生Alex使用一个特别构造的深度神经网络(后来就叫AlexNet),在图像识别的专业比赛ImageNet中,得到了远超之前最好成绩的结果,那个时候,整个人工智能领域就已经明白,深度学习的革命已经到来了。
果然,之后深度学习在包括语音识别,图像理解,机器翻译等传统的人工智能领域都超越了原先各自领域效果最好的方法。从2015年起,工业界内一些嗅觉灵敏的人士也意识到,一场革命或已到来。
关于基本概念的学习
机器学习与深度学习
深度学习是机器学习中的一种技术,机器学习包含深度学习。机器学习还包含其他非深度学习的技术,比如支持向量机,决策树,随机森林,以及关于“学习”的一些基本理论,比如,同样都能描述已知数据的两个不同模型,参数更少的那个对未知数据的预测能力更好(奥卡姆剃刀原理)。
深度学习是一类特定的机器学习技术,主要是深度神经网络学习,在之前经典的多层神经网络的基础上,将网络的层数加深,并辅以更复杂的结构,在有极大量的数据用于训练的情况下,在很多领域得到了比其他方法更好的结果。
网友评论