美文网首页
今日学术视野(2019.1.31)

今日学术视野(2019.1.31)

作者: ZQtGe6 | 来源:发表于2019-01-31 05:16 被阅读88次

cs.AI - 人工智能
cs.CL - 计算与语言
cs.CR - 加密与安全
cs.CV - 机器视觉与模式识别
cs.CY - 计算与社会
cs.DC - 分布式、并行与集群计算
cs.DS - 数据结构与算法
cs.ET - 新兴技术
cs.GT - 计算机科学与博弈论
cs.IR - 信息检索
cs.IT - 信息论
cs.LG - 自动学习
cs.MA - 多代理系统
cs.NE - 神经与进化计算
cs.RO - 机器人学
cs.SI - 社交网络与信息网络
eess.IV - 图像与视频处理
math.OC - 优化与控制
math.PR - 概率
math.ST - 统计理论
q-bio.QM - 定量方法
quant-ph - 量子物理
stat.AP - 应用统计
stat.ME - 统计方法论
stat.ML - (统计)机器学习

• [cs.AI]Adversarial Adaptation of Scene Graph Models for Understanding Civic Issues
• [cs.AI]Constraint Satisfaction Propagation: Non-stationary Policy Synthesis for Temporal Logic Planning
• [cs.AI]Knowledge Refinement via Rule Selection
• [cs.AI]On the negation of a Dempster-Shafer belief structure based on maximum uncertainty allocation
• [cs.CL]An Arabic Dependency Treebank in the Travel Domain
• [cs.CL]Divide and Generate: Neural Generation of Complex Sentences
• [cs.CL]Evaluating Word Embedding Models: Methods and Experimental Results
• [cs.CL]Glyce: Glyph-vectors for Chinese Character Representations
• [cs.CL]Guidelines for creating man-machine multimodal interfaces
• [cs.CL]No Training Required: Exploring Random Encoders for Sentence Classification
• [cs.CL]OpenHowNet: An Open Sememe-based Lexical Knowledge Base
• [cs.CL]Pay Less Attention with Lightweight and Dynamic Convolutions
• [cs.CL]TiFi: Taxonomy Induction for Fictional Domains [Extended version]
• [cs.CL]Universal Dependency Parsing from Scratch
• [cs.CR]MultiLock: Mobile Active Authentication based on Multiple Biometric and Behavioral Patterns
• [cs.CR]RED-Attack: Resource Efficient Decision based Attack for Machine Learning
• [cs.CV]A Push-Pull Layer Improves Robustness of Convolutional Neural Networks
• [cs.CV]Anomaly Locality in Video Surveillance
• [cs.CV]Attention-based Context Aggregation Network for Monocular Depth Estimation
• [cs.CV]Automatic Whole-body Bone Age Assessment Using Deep Hierarchical Features
• [cs.CV]Cloud-Net: An end-to-end Cloud Detection Algorithm for Landsat 8 Imagery
• [cs.CV]Combined tract segmentation and orientation mapping for bundle-specific tractography
• [cs.CV]Compressed domain image classification using a multi-rate neural network
• [cs.CV]DeGraF-Flow: Extending DeGraF Features for accurate and efficient sparse-to-dense optical flow estimation
• [cs.CV]Dense Depth Posterior (DDP) from Single Image and Sparse Range
• [cs.CV]Discovering Underlying Person Structure Pattern with Relative Local Distance for Person Re-identification
• [cs.CV]Diversity in Faces
• [cs.CV]Evaluating Generalization Ability of Convolutional Neural Networks and Capsule Networks for Image Classification via Top-2 Classification
• [cs.CV]Explicit topological priors for deep-learning based image segmentation using persistent homology
• [cs.CV]Influence of segmentation on deep iris recognition performance
• [cs.CV]Learning for Multi-Model and Multi-Type Fitting
• [cs.CV]Mask-RCNN and U-net Ensembled for Nuclei Segmentation
• [cs.CV]MgNet: A Unified Framework of Multigrid and Convolutional Neural Network
• [cs.CV]PA-GAN: Improving GAN Training by Progressive Augmentation
• [cs.CV]Quality Measures for Speaker Verification with Short Utterances
• [cs.CV]Real-time Hand Gesture Detection and Classification Using Convolutional Neural Networks
• [cs.CV]Reconstruction of 3D Porous Media From 2D Slices
• [cs.CV]TGAN: Deep Tensor Generative Adversarial Nets for Large Image Generation
• [cs.CV]Two-Stream Multi-Task Network for Fashion Recognition
• [cs.CV]Unsupervised Person Re-identification by Deep Asymmetric Metric Embedding
• [cs.CV]Validation loss for landmark detection
• [cs.CV]Visual Rhythm Prediction with Feature-Aligning Network
• [cs.CV]Who's Afraid of Adversarial Queries? The Impact of Image Modifications on Content-based Image Retrieval
• [cs.CY]"And We Will Fight For Our Race!" A Measurement Study of Genetic Testing Conversations on Reddit and 4chan
• [cs.CY]Performance comparison of an AI-based Adaptive Learning System in China
• [cs.CY]Quantifying the Impact of User Attention on Fair Group Representation in Ranked Lists
• [cs.DC]A Comprehensive Survey on Parallelization and Elasticity in Stream Processing
• [cs.DC]A Modular Benchmarking Infrastructure for High-Performance and Reproducible Deep Learning
• [cs.DC]A Parallel Projection Method for Metric Constrained Optimization
• [cs.DC]Managing Fog Networks using Reinforcement Learning Based Load Balancing Algorithm
• [cs.DC]On transaction parallelizability in Ethereum
• [cs.DC]The OoO VLIW JIT Compiler for GPU Inference
• [cs.DS]A Pseudo-Deterministic RNC Algorithm for General Graph Perfect Matching
• [cs.ET]FPSA: A Full System Stack Solution for Reconfigurable ReRAM-based NN Accelerator Architecture
• [cs.GT]A Regulation Enforcement Solution for Multi-agent Reinforcement Learning
• [cs.GT]Committee Selection with Attribute Level Preferences
• [cs.GT]Fair Online Advertising
• [cs.IR]A New Approach for Query Expansion using Wikipedia and WordNet
• [cs.IR]Federated Collaborative Filtering for Privacy-Preserving Personalized Recommendation System
• [cs.IR]Optimizing Ranking Models in an Online Setting
• [cs.IR]Revised JNLPBA Corpus: A Revised Version of Biomedical NER Corpus for Relation Extraction Task
• [cs.IR]Structuring an unordered text document
• [cs.IR]Towards Optimal Discrete Online Hashing with Balanced Similarity
• [cs.IR]catch22: CAnonical Time-series CHaracteristics
• [cs.IT]Asymptotic Performance Analysis of Generalized User Selection for Interference-Limited Multiuser Secondary
• [cs.IT]Blind Unwrapping of Modulo Reduced Gaussian Vectors: Recovering MSBs from LSBs
• [cs.IT]Clustered Millimeter Wave Networks with Non-Orthogonal Multiple Access
• [cs.IT]Interleaving Loidreau's Rank-Metric Cryptosystem
• [cs.IT]On Decoding and Applications of Interleaved Goppa Codes
• [cs.IT]Optimal Multiuser Loading in Quantized Massive MIMO under Spatially Correlated Channels
• [cs.IT]Private Polynomial Computation for Noncolluding Coded Databases
• [cs.IT]Secrecy Outage Analysis of Non-Orthogonal Spectrum Sharing for Heterogeneous Cellular Networks
• [cs.IT]Secrecy Outage and Diversity Analysis of Spectrum-Sharing Heterogeneous Wireless Systems
• [cs.IT]Secure Massive MIMO Communication with Low-resolution DACs
• [cs.IT]Spatial and Temporal Analysis of Direct Communications from Static Devices to Mobile Vehicles
• [cs.LG]A Framework for Understanding Unintended Consequences of Machine Learning
• [cs.LG]A deep learning framework for assessment of quality of rehabilitation exercises
• [cs.LG]An Investigation into Neural Net Optimization via Hessian Eigenvalue Density
• [cs.LG]Approximating Spectral Clustering via Sampling: a Review
• [cs.LG]Approximation of functions by neural networks
• [cs.LG]Bayes Imbalance Impact Index: A Measure of Class Imbalanced Dataset for Classification Problem
• [cs.LG]CLIC: Curriculum Learning and Imitation for feature Control in non-rewarding environments
• [cs.LG]Computing Optimal Assignments in Linear Time for Graph Matching
• [cs.LG]Conditioning by adaptive sampling for robust design
• [cs.LG]Deep Constrained Clustering - Algorithms and Advances
• [cs.LG]Deep-dust: Predicting concentrations of fine dust in Seoul using LSTM
• [cs.LG]Emergence of Hierarchy via Reinforcement Learning Using a Multiple Timescale Stochastic RNN
• [cs.LG]Generalized Label Propagation Methods for Semi-Supervised Learning
• [cs.LG]Geometric Matrix Completion with Deep Conditional Random Fields
• [cs.LG]Harnessing GANs for Addition of New Classes in VSR
• [cs.LG]Heartbeat Anomaly Detection using Adversarial Oversampling
• [cs.LG]Hierarchically Clustered Representation Learning
• [cs.LG]Imitation Learning from Imperfect Demonstration
• [cs.LG]Implicit Diversity in Image Summarization
• [cs.LG]Improved Adversarial Learning for Fair Classification
• [cs.LG]Lie Group Auto-Encoder
• [cs.LG]Limitations of Assessing Active Learning Performance at Runtime
• [cs.LG]Lyapunov-based Safe Policy Optimization for Continuous Control
• [cs.LG]Making Deep Q-learning methods robust to time discretization
• [cs.LG]Modularization of End-to-End Learning: Case Study in Arcade Games
• [cs.LG]Multi Agent Reinforcement Learning with Multi-Step Generative Models
• [cs.LG]Multikernel activation functions: formulation and a case study
• [cs.LG]On the Effect of Low-Rank Weights on Adversarial Robustness of Neural Networks
• [cs.LG]On the Expressive Power of Deep Fully Circulant Neural Networks
• [cs.LG]PuppetGAN: Transferring Disentangled Properties from Synthetic to Real Images
• [cs.LG]Representation Learning for Heterogeneous Information Networks via Embedding Events
• [cs.LG]Revisiting Sample Selection Approach to Positive-Unlabeled Learning: Turning Unlabeled Data into Positive rather than Negative
• [cs.LG]Robust Learning from Untrusted Sources
• [cs.LG]Self-Supervised Deep Image Denoising
• [cs.LG]Sliced generative models
• [cs.LG]Sparse Least Squares Low Rank Kernel Machines
• [cs.LG]Structural Material Property Tailoring Using Deep Neural Networks
• [cs.LG]The CM Algorithm for the Maximum Mutual Information Classifications of Unseen Instances
• [cs.LG]Towards Fair Deep Clustering With Multi-State Protected Variables
• [cs.LG]Trust Region-Guided Proximal Policy Optimization
• [cs.LG]Using Pre-Training Can Improve Model Robustness and Uncertainty
• [cs.LG]Visualizing and Understanding Generative Adversarial Networks (Extended Abstract)
• [cs.MA]Designing a Multi-Objective Reward Function for Creating Teams of Robotic Bodyguards Using Deep Reinforcement Learning
• [cs.NE]Minimax-optimal decoding of movement goals from local field potentials using complex spectral features
• [cs.NE]Surrogate Gradient Learning in Spiking Neural Networks
• [cs.RO]A Minimalistic Approach to Segregation in Robot Swarms
• [cs.RO]A Robot for Nondestructive Assay of Holdup Deposits in Gaseous Diffusion Piping
• [cs.RO]Dynamic Manipulation of Flexible Objects with Torque Sequence Using a Deep Neural Network
• [cs.RO]How Shall I Drive? Interaction Modeling and Motion Planning towards Empathetic and Socially-Graceful Driving
• [cs.RO]Iterative Learning Control for Fast and Accurate Position Tracking with a Soft Robotic Arm
• [cs.RO]Multi-UAV Visual Coverage of Partially Known 3D Surfaces: Voronoi-based Initialization to Improve Local Optimizers
• [cs.SI]A Systematic Analysis of Fine-Grained Human Mobility Prediction with On-Device Contextual Data
• [cs.SI]Heterogeneous Network Motifs
• [cs.SI]Semantic and Influence aware k-Representative Queries over Social Streams
• [eess.IV]Detection of Alzheimers Disease from MRI using Convolutional Neural Networks, Exploring Transfer Learning And BellCNN
• [math.OC]A Homotopy Method for Motion Planning
• [math.OC]Quasi-Newton Methods for Deep Learning: Forget the Past, Just Sample
• [math.OC]Stochastic Conditional Gradient Method for Composite Convex Minimization
• [math.PR]A conditional Berry-Esseen inequality
• [math.PR]An accelerated variant of simulated annealing that converges under fast cooling
• [math.PR]Log-minor distributions and an application to estimating mean subsystem entropy
• [math.ST]Nonparametric estimation of jump rates for a specific class of Piecewise Deterministic Markov Processes
• [q-bio.QM]Representation Transfer for Differentially Private Drug Sensitivity Prediction
• [q-bio.QM]Simultaneous prediction of multiple outcomes using revised stacking algorithms
• [quant-ph]Optimising Clifford Circuits with Quantomatic
• [stat.AP]A new tidy data structure to support exploration and modeling of temporal data
• [stat.ME]Centered Partition Process: Informative Priors for Clustering
• [stat.ME]GPMatch: A Bayesian Doubly Robust Approach to Causal Inference with Gaussian Process Covariance Function As a Matching Tool
• [stat.ME]Hierarchical network models for structured exchangeable interaction processes
• [stat.ME]Incorporating prior information and borrowing information in high-dimensional sparse regression using the horseshoe and variational Bayes
• [stat.ME]Inference after black box selection
• [stat.ME]Inferring Heterogeneous Causal Effects in Presence of Spatial Confounding
• [stat.ME]Pairwise likelihood inference for the multivariate ordered probit model
• [stat.ME]Statistical inference of probabilistic origin-destination demand using day-to-day traffic data
• [stat.ME]Testing Conditional Predictive Independence in Supervised Learning Algorithms
• [stat.ML]A maximum principle argument for the uniform convergence of graph Laplacian regressors
• [stat.ML]Active learning for binary classification with variable selection
• [stat.ML]Asynchronous Batch Bayesian Optimisation with Improved Local Penalisation
• [stat.ML]Differentially Private Markov Chain Monte Carlo
• [stat.ML]General Fair Empirical Risk Minimization
• [stat.ML]Generative Adversarial Networks for geometric surfaces prediction in injection molding
• [stat.ML]Identifiability of Gaussian Structural Equation Models with Homogeneous and Heterogeneous Error Variances
• [stat.ML]Improving Adversarial Robustness of Ensembles with Diversity Training
• [stat.ML]Kernel embedded nonlinear observational mappings in the variational mapping particle filter
• [stat.ML]Learning Schatten--Von Neumann Operators
• [stat.ML]Partially Exchangeable Networks and Architectures for Learning Summary Statistics in Approximate Bayesian Computation
• [stat.ML]Rank-one Convexification for Sparse Regression
• [stat.ML]Sample Complexity Bounds for Recurrent Neural Networks with Application to Combinatorial Graph Problems
• [stat.ML]Variational Characterizations of Local Entropy and Heat Regularization in Deep Learning

·····································

• [cs.AI]Adversarial Adaptation of Scene Graph Models for Understanding Civic Issues
Shanu Kumar, Shubham Atreja, Anjali Singh, Mohit Jain
http://arxiv.org/abs/1901.10124v1

• [cs.AI]Constraint Satisfaction Propagation: Non-stationary Policy Synthesis for Temporal Logic Planning
Thomas J. Ringstrom, Paul R. Schrater
http://arxiv.org/abs/1901.10405v1

• [cs.AI]Knowledge Refinement via Rule Selection
Phokion G. Kolaitis, Lucian Popa, Kun Qian
http://arxiv.org/abs/1901.10051v1

• [cs.AI]On the negation of a Dempster-Shafer belief structure based on maximum uncertainty allocation
Xinyang Deng, Wen Jiang
http://arxiv.org/abs/1901.10072v1

• [cs.CL]An Arabic Dependency Treebank in the Travel Domain
Dima Taji, Jamila El Gizuli, Nizar Habash
http://arxiv.org/abs/1901.10188v1

• [cs.CL]Divide and Generate: Neural Generation of Complex Sentences
Tomoya Ogata, Mamoru Komachi, Tomoya Takatani
http://arxiv.org/abs/1901.10196v1

• [cs.CL]Evaluating Word Embedding Models: Methods and Experimental Results
Bin Wang, Angela Wang, Fenxiao Chen, Yuncheng Wang, C. -C. Jay Kuo
http://arxiv.org/abs/1901.09785v2

• [cs.CL]Glyce: Glyph-vectors for Chinese Character Representations
Wei Wu, Yuxian Meng, Qinghong Han, Muyu Li, Xiaoya Li, Jie Mei, Ping Nie, Xiaofei Sun, Jiwei Li
http://arxiv.org/abs/1901.10125v1

• [cs.CL]Guidelines for creating man-machine multimodal interfaces
João Ranhel, Cacilda Vilela
http://arxiv.org/abs/1901.10408v1

• [cs.CL]No Training Required: Exploring Random Encoders for Sentence Classification
John Wieting, Douwe Kiela
http://arxiv.org/abs/1901.10444v1

• [cs.CL]OpenHowNet: An Open Sememe-based Lexical Knowledge Base
Fanchao Qi, Chenghao Yang, Zhiyuan Liu, Qiang Dong, Maosong Sun, Zhendong Dong
http://arxiv.org/abs/1901.09957v1

• [cs.CL]Pay Less Attention with Lightweight and Dynamic Convolutions
Felix Wu, Angela Fan, Alexei Baevski, Yann N. Dauphin, Michael Auli
http://arxiv.org/abs/1901.10430v1

• [cs.CL]**TiFi: Taxonomy Induction for Fictional Domains [Extended version]****
Cuong Xuan Chu, Simon Razniewski, Gerhard Weikum
http://arxiv.org/abs/1901.10263v1

• [cs.CL]Universal Dependency Parsing from Scratch
Peng Qi, Timothy Dozat, Yuhao Zhang, Christopher D. Manning
http://arxiv.org/abs/1901.10457v1

• [cs.CR]MultiLock: Mobile Active Authentication based on Multiple Biometric and Behavioral Patterns
Alejandro Acien, Aythami Morales, Ruben Vera-Rodriguez, Julian Fierrez
http://arxiv.org/abs/1901.10312v1

• [cs.CR]RED-Attack: Resource Efficient Decision based Attack for Machine Learning
Faiq Khalid, Hassan Ali, Muhammad Abdullah Hanif, Semeen Rehman, Rehan Ahmed, Muhammad Shafique
http://arxiv.org/abs/1901.10258v1

• [cs.CV]A Push-Pull Layer Improves Robustness of Convolutional Neural Networks
Nicola Strisciuglio, Manuel Lopez-Antequera, Nicolai Petkov
http://arxiv.org/abs/1901.10208v1

• [cs.CV]Anomaly Locality in Video Surveillance
Federico Landi, Cees G. M. Snoek, Rita Cucchiara
http://arxiv.org/abs/1901.10364v1

• [cs.CV]Attention-based Context Aggregation Network for Monocular Depth Estimation
Yuru Chen, Haitao Zhao, Zhengwei Hu
http://arxiv.org/abs/1901.10137v1

• [cs.CV]Automatic Whole-body Bone Age Assessment Using Deep Hierarchical Features
Hai-Duong Nguyen, Soo-Hyung Kim
http://arxiv.org/abs/1901.10237v1

• [cs.CV]Cloud-Net: An end-to-end Cloud Detection Algorithm for Landsat 8 Imagery
Sorour Mohajerani, Parvaneh Saeedi
http://arxiv.org/abs/1901.10077v1

• [cs.CV]Combined tract segmentation and orientation mapping for bundle-specific tractography
Jakob Wasserthal, Peter Neher, Dusan Hirjak, Klaus H. Maier-Hein
http://arxiv.org/abs/1901.10271v1

• [cs.CV]Compressed domain image classification using a multi-rate neural network
Yibo Xu, Kevin F. Kelly
http://arxiv.org/abs/1901.09983v1

• [cs.CV]DeGraF-Flow: Extending DeGraF Features for accurate and efficient sparse-to-dense optical flow estimation
Felix Stephenson, Toby Breckon, Ioannis Katramados
http://arxiv.org/abs/1901.09971v1

• [cs.CV]Dense Depth Posterior (DDP) from Single Image and Sparse Range
Yanchao Yang, Alex Wong, Stefano Soatto
http://arxiv.org/abs/1901.10034v1

• [cs.CV]Discovering Underlying Person Structure Pattern with Relative Local Distance for Person Re-identification
Guangcong Wang, Jianhuang Lai, Zhenyu Xie, Xiaohua Xie
http://arxiv.org/abs/1901.10100v1

• [cs.CV]Diversity in Faces
Michele Merler, Nalini Ratha, Rogerio S. Feris, John R. Smith
http://arxiv.org/abs/1901.10436v1

• [cs.CV]Evaluating Generalization Ability of Convolutional Neural Networks and Capsule Networks for Image Classification via Top-2 Classification
Hao Ren, Jianlin Su, Hong Lu
http://arxiv.org/abs/1901.10112v1

• [cs.CV]Explicit topological priors for deep-learning based image segmentation using persistent homology
James R. Clough, Ilkay Oksuz, Nicholas Byrne, Julia A. Schnabel, Andrew P. King
http://arxiv.org/abs/1901.10244v1

• [cs.CV]Influence of segmentation on deep iris recognition performance
Juš Lozej, Dejan Štepec, Vitomir Štruc, Peter Peer
http://arxiv.org/abs/1901.10431v1

• [cs.CV]Learning for Multi-Model and Multi-Type Fitting
Xun Xu, Loong-Fah Cheong, Zhuwen Li
http://arxiv.org/abs/1901.10254v1

• [cs.CV]Mask-RCNN and U-net Ensembled for Nuclei Segmentation
Aarno Oskar Vuola, Saad Ullah Akram, Juho Kannala
http://arxiv.org/abs/1901.10170v1

• [cs.CV]MgNet: A Unified Framework of Multigrid and Convolutional Neural Network
Juncai He, Jinchao Xu
http://arxiv.org/abs/1901.10415v1

• [cs.CV]PA-GAN: Improving GAN Training by Progressive Augmentation
Dan Zhang, Anna Khoreva
http://arxiv.org/abs/1901.10422v1

• [cs.CV]Quality Measures for Speaker Verification with Short Utterances
Arnab Poddar, Md Sahidullah, Goutam Saha
http://arxiv.org/abs/1901.10345v1

• [cs.CV]Real-time Hand Gesture Detection and Classification Using Convolutional Neural Networks
Okan Köpüklü, Ahmet Gunduz, Neslihan Kose, Gerhard Rigoll
http://arxiv.org/abs/1901.10323v1

• [cs.CV]Reconstruction of 3D Porous Media From 2D Slices
Denis Volkhonskiy, Ekaterina Muravleva, Oleg Sudakov, Denis Orlov, Boris Belozerov, Evgeny Burnaev, Dmitry Koroteev
http://arxiv.org/abs/1901.10233v1

• [cs.CV]TGAN: Deep Tensor Generative Adversarial Nets for Large Image Generation
Zihan Ding, Xiao-Yang Liu, Miao Yin, Wei Liu, Linghe Kong
http://arxiv.org/abs/1901.09953v1

• [cs.CV]Two-Stream Multi-Task Network for Fashion Recognition
Peizhao Li, Yanjing Li, Xiaolong Jiang, Xiantong Zhen
http://arxiv.org/abs/1901.10172v1

• [cs.CV]Unsupervised Person Re-identification by Deep Asymmetric Metric Embedding
Hong-Xing Yu, Ancong Wu, Wei-Shi Zheng
http://arxiv.org/abs/1901.10177v1

• [cs.CV]Validation loss for landmark detection
Wolfgang Fuhl, Thomas Kübler, Rene Alexander Lotz, Gjergji Kasneci, Wolfgang Rosenstiel, Enkelejda Kasneci
http://arxiv.org/abs/1901.10143v1

• [cs.CV]Visual Rhythm Prediction with Feature-Aligning Network
Yutong Xie, Haiyang Wang, Yan Hao, Zihao Xu
http://arxiv.org/abs/1901.10163v1

• [cs.CV]Who's Afraid of Adversarial Queries? The Impact of Image Modifications on Content-based Image Retrieval
Zhuoran Liu, Zhengyu Zhao, Martha Larson
http://arxiv.org/abs/1901.10332v1

• [cs.CY]"And We Will Fight For Our Race!" A Measurement Study of Genetic Testing Conversations on Reddit and 4chan
Alexandros Mittos, Savvas Zannettou, Jeremy Blackburn, Emiliano De Cristofaro
http://arxiv.org/abs/1901.09735v2

• [cs.CY]Performance comparison of an AI-based Adaptive Learning System in China
Wei Cui, Zhen Xue, Khanh-Phuong Thai
http://arxiv.org/abs/1901.10268v1

• [cs.CY]Quantifying the Impact of User Attention on Fair Group Representation in Ranked Lists
Piotr Sapiezynski, Wesley Zeng, Ronald E. Robertson, Alan Mislove, Christo Wilson
http://arxiv.org/abs/1901.10437v1

• [cs.DC]A Comprehensive Survey on Parallelization and Elasticity in Stream Processing
Henriette Röger, Ruben Mayer
http://arxiv.org/abs/1901.09716v2

• [cs.DC]A Modular Benchmarking Infrastructure for High-Performance and Reproducible Deep Learning
Tal Ben-Nun, Maciej Besta, Simon Huber, Alexandros Nikolaos Ziogas, Daniel Peter, Torsten Hoefler
http://arxiv.org/abs/1901.10183v1

• [cs.DC]A Parallel Projection Method for Metric Constrained Optimization
Cameron Ruggles, Nate Veldt, David F. Gleich
http://arxiv.org/abs/1901.10084v1

• [cs.DC]Managing Fog Networks using Reinforcement Learning Based Load Balancing Algorithm
Jung-yeon Baek, Georges Kaddoum, Sahil Garg, Kuljeet Kaur, Vivianne Gravel
http://arxiv.org/abs/1901.10023v1

• [cs.DC]On transaction parallelizability in Ethereum
Nadi Sarrar
http://arxiv.org/abs/1901.09942v1

• [cs.DC]The OoO VLIW JIT Compiler for GPU Inference
Paras Jain, Xiangxi Mo, Ajay Jain, Alexey Tumanov, Joseph E. Gonzalez, Ion Stoica
http://arxiv.org/abs/1901.10008v1

• [cs.DS]A Pseudo-Deterministic RNC Algorithm for General Graph Perfect Matching
Nima Anari, Vijay V. Vazirani
http://arxiv.org/abs/1901.10387v1

• [cs.ET]FPSA: A Full System Stack Solution for Reconfigurable ReRAM-based NN Accelerator Architecture
Yu Ji, Youyang Zhang, Xinfeng Xie, Shuangchen Li, Peiqi Wang, Xing Hu, Youhui Zhang, Yuan Xie
http://arxiv.org/abs/1901.09904v1

• [cs.GT]A Regulation Enforcement Solution for Multi-agent Reinforcement Learning
Fan-Yun Sun, Yen-Yu Chang, Yueh-Hua Wu, Shou-De Lin
http://arxiv.org/abs/1901.10059v1

• [cs.GT]Committee Selection with Attribute Level Preferences
Venkateswara Rao Kagita, Arun K Pujari, Vineet Padmanabhan, Vikas Kumar
http://arxiv.org/abs/1901.10064v1

• [cs.GT]Fair Online Advertising
L. Elisa Celis, Anay Mehrotra, Nisheeth K. Vishnoi
http://arxiv.org/abs/1901.10450v1

• [cs.IR]A New Approach for Query Expansion using Wikipedia and WordNet
Hiteshwar Kumar Azad, Akshay Deepak
http://arxiv.org/abs/1901.10197v1

• [cs.IR]Federated Collaborative Filtering for Privacy-Preserving Personalized Recommendation System
Muhammad Ammad-ud-din, Elena Ivannikova, Suleiman A. Khan, Were Oyomno, Qiang Fu, Kuan Eeik Tan, Adrian Flanagan
http://arxiv.org/abs/1901.09888v1

• [cs.IR]Optimizing Ranking Models in an Online Setting
Harrie Oosterhuis, Maarten de Rijke
http://arxiv.org/abs/1901.10262v1

• [cs.IR]Revised JNLPBA Corpus: A Revised Version of Biomedical NER Corpus for Relation Extraction Task
Ming-Siang Huang, Po-Ting Lai, Richard Tzong-Han Tsai, Wen-Lian Hsu
http://arxiv.org/abs/1901.10219v1

• [cs.IR]Structuring an unordered text document
Shashank Yadav, Tejas Shimpi, C. Ravindranath Chowdary, Prashant Sharma, Deepansh Agrawal, Shivang Agarwal
http://arxiv.org/abs/1901.10133v1

• [cs.IR]Towards Optimal Discrete Online Hashing with Balanced Similarity
Mingbao Lin, Rongrong Ji, Hong Liu, Xiaoshuai Sun, Yongjian Wu, Yunsheng Wu
http://arxiv.org/abs/1901.10185v1

• [cs.IR]catch22: CAnonical Time-series CHaracteristics
Carl H Lubba, Sarab S Sethi, Philip Knaute, Simon R Schultz, Ben D Fulcher, Nick S Jones
http://arxiv.org/abs/1901.10200v1

• [cs.IT]Asymptotic Performance Analysis of Generalized User Selection for Interference-Limited Multiuser Secondary
Yazan H. Al-Badarneh, Costas N. Georghiades, Mohamed-Slim Alouini
http://arxiv.org/abs/1901.09901v1

• [cs.IT]Blind Unwrapping of Modulo Reduced Gaussian Vectors: Recovering MSBs from LSBs
Elad Romanov, Or Ordentlich
http://arxiv.org/abs/1901.10396v1

• [cs.IT]Clustered Millimeter Wave Networks with Non-Orthogonal Multiple Access
Wenqiang Yi, Yuanwei Liu, Arumugam Nallanathan, Maged Elkashlan
http://arxiv.org/abs/1901.09916v1

• [cs.IT]Interleaving Loidreau's Rank-Metric Cryptosystem
Julian Renner, Sven Puchinger, Antonia Wachter-Zeh
http://arxiv.org/abs/1901.10413v1

• [cs.IT]On Decoding and Applications of Interleaved Goppa Codes
Lukas Holzbaur, Hedongliang Liu, Sven Puchinger, Antonia Wachter-Zeh
http://arxiv.org/abs/1901.10202v1

• [cs.IT]Optimal Multiuser Loading in Quantized Massive MIMO under Spatially Correlated Channels
Jindan Xu, Wei Xu, Fengkui Gong, Hua Zhang, Xiaohu You
http://arxiv.org/abs/1901.10028v1

• [cs.IT]Private Polynomial Computation for Noncolluding Coded Databases
Sarah A. Obead, Hsuan-Yin Lin, Eirik Rosnes, Jörg Kliewer
http://arxiv.org/abs/1901.10286v1

• [cs.IT]Secrecy Outage Analysis of Non-Orthogonal Spectrum Sharing for Heterogeneous Cellular Networks
Yulong Zou, Tong Wu, Ming Sun, Jia Zhu, Mujun Qian, Chen Liu
http://arxiv.org/abs/1901.09417v2

• [cs.IT]Secrecy Outage and Diversity Analysis of Spectrum-Sharing Heterogeneous Wireless Systems
Xiaojin Ding, Yulong Zou, Xiaoshu Chen, Xiaojun Wang, Lajos Hanzo
http://arxiv.org/abs/1901.10095v1

• [cs.IT]Secure Massive MIMO Communication with Low-resolution DACs
Jindan Xu, Wei Xu, Jun Zhu, Derrick Wing Kwan Ng, A. Lee Swindlehurst
http://arxiv.org/abs/1901.10017v1

• [cs.IT]Spatial and Temporal Analysis of Direct Communications from Static Devices to Mobile Vehicles
Chang-sik Choi, François Baccelli
http://arxiv.org/abs/1901.10401v1

• [cs.LG]A Framework for Understanding Unintended Consequences of Machine Learning
Harini Suresh, John V. Guttag
http://arxiv.org/abs/1901.10002v1

• [cs.LG]A deep learning framework for assessment of quality of rehabilitation exercises
Y. Liao, A. Vakanski, M. Xian
http://arxiv.org/abs/1901.10435v1

• [cs.LG]An Investigation into Neural Net Optimization via Hessian Eigenvalue Density
Behrooz Ghorbani, Shankar Krishnan, Ying Xiao
http://arxiv.org/abs/1901.10159v1

• [cs.LG]Approximating Spectral Clustering via Sampling: a Review
Nicolas Tremblay, Andreas Loukas
http://arxiv.org/abs/1901.10204v1

• [cs.LG]Approximation of functions by neural networks
Andreas Thom
http://arxiv.org/abs/1901.10267v1

• [cs.LG]Bayes Imbalance Impact Index: A Measure of Class Imbalanced Dataset for Classification Problem
Yang Lu, Yiu-ming Cheung, Yuan Yan Tang
http://arxiv.org/abs/1901.10173v1

• [cs.LG]CLIC: Curriculum Learning and Imitation for feature Control in non-rewarding environments
Pierre Fournier, Cédric Colas, Olivier Sigaud, Mohamed Chetouani
http://arxiv.org/abs/1901.09720v2

• [cs.LG]Computing Optimal Assignments in Linear Time for Graph Matching
Nils M. Kriege, Pierre-Louis Giscard, Franka Bause, Richard C. Wilson
http://arxiv.org/abs/1901.10356v1

• [cs.LG]Conditioning by adaptive sampling for robust design
David H. Brookes, Hahnbeom Park, Jennifer Listgarten
http://arxiv.org/abs/1901.10060v1

• [cs.LG]Deep Constrained Clustering - Algorithms and Advances
Hongjing Zhang, Sugato Basu, Ian Davidson
http://arxiv.org/abs/1901.10061v1

• [cs.LG]Deep-dust: Predicting concentrations of fine dust in Seoul using LSTM
Sookyung Kim, Jungmin M. Lee, Jiwoo Lee, Jihoon Seo
http://arxiv.org/abs/1901.10106v1

• [cs.LG]Emergence of Hierarchy via Reinforcement Learning Using a Multiple Timescale Stochastic RNN
Dongqi Han, Kenji Doya, Jun Tani
http://arxiv.org/abs/1901.10113v1

• [cs.LG]Generalized Label Propagation Methods for Semi-Supervised Learning
Qimai Li, Xiao-Ming Wu, Zhichao Guan
http://arxiv.org/abs/1901.09993v1

• [cs.LG]Geometric Matrix Completion with Deep Conditional Random Fields
Duc Minh Nguyen, Robert Calderbank, Nikos Deligiannis
http://arxiv.org/abs/1901.10429v1

• [cs.LG]Harnessing GANs for Addition of New Classes in VSR
Yaman Kumar, Shubham Maheshwari, Dhruva Sahrawat, Praveen Jhanwar, Vipin Chaudhary, Rajiv Ratn Shah, Debanjan Mahata
http://arxiv.org/abs/1901.10139v1

• [cs.LG]Heartbeat Anomaly Detection using Adversarial Oversampling
Jefferson L. P. Lima, David Macêdo, Cleber Zanchettin
http://arxiv.org/abs/1901.09972v1

• [cs.LG]Hierarchically Clustered Representation Learning
Su-Jin Shin, Kyungwoo Song, Il-Chul Moon
http://arxiv.org/abs/1901.09906v1

• [cs.LG]Imitation Learning from Imperfect Demonstration
Yueh-Hua Wu, Nontawat Charoenphakdee, Han Bao, Voot Tangkaratt, Masashi Sugiyama
http://arxiv.org/abs/1901.09387v2

• [cs.LG]Implicit Diversity in Image Summarization
L. Elisa Celis, Vijay Keswani
http://arxiv.org/abs/1901.10265v1

• [cs.LG]Improved Adversarial Learning for Fair Classification
L. Elisa Celis, Vijay Keswani
http://arxiv.org/abs/1901.10443v1

• [cs.LG]Lie Group Auto-Encoder
Liyu Gong, Qiang Cheng
http://arxiv.org/abs/1901.09970v1

• [cs.LG]Limitations of Assessing Active Learning Performance at Runtime
Daniel Kottke, Jim Schellinger, Denis Huseljic, Bernhard Sick
http://arxiv.org/abs/1901.10338v1

• [cs.LG]Lyapunov-based Safe Policy Optimization for Continuous Control
Yinlam Chow, Ofir Nachum, Aleksandra Faust, Mohammad Ghavamzadeh, Edgar Duenez-Guzman
http://arxiv.org/abs/1901.10031v1

• [cs.LG]Making Deep Q-learning methods robust to time discretization
Corentin Tallec, Léonard Blier, Yann Ollivier
http://arxiv.org/abs/1901.09732v2

• [cs.LG]Modularization of End-to-End Learning: Case Study in Arcade Games
Andrew Melnik, Sascha Fleer, Malte Schilling, Helge Ritter
http://arxiv.org/abs/1901.09895v1

• [cs.LG]Multi Agent Reinforcement Learning with Multi-Step Generative Models
Orr Krupnik, Igor Mordatch, Aviv Tamar
http://arxiv.org/abs/1901.10251v1

• [cs.LG]Multikernel activation functions: formulation and a case study
Simone Scardapane, Elena Nieddu, Donatella Firmani, Paolo Merialdo
http://arxiv.org/abs/1901.10232v1

• [cs.LG]On the Effect of Low-Rank Weights on Adversarial Robustness of Neural Networks
Peter Langeberg, Emilio Rafael Balda, Arash Behboodi, Rudolf Mathar
http://arxiv.org/abs/1901.10371v1

• [cs.LG]On the Expressive Power of Deep Fully Circulant Neural Networks
Alexandre Araujo, Benjamin Negrevergne, Yann Chevaleyre, Jamal Atif
http://arxiv.org/abs/1901.10255v1

• [cs.LG]PuppetGAN: Transferring Disentangled Properties from Synthetic to Real Images
Ben Usman, Nick Dufour, Kate Saenko, Chris Bregler
http://arxiv.org/abs/1901.10024v1

• [cs.LG]Representation Learning for Heterogeneous Information Networks via Embedding Events
Guoji Fu, Bo Yuan, Qiqi Duan, Xin Yao
http://arxiv.org/abs/1901.10234v1

• [cs.LG]Revisiting Sample Selection Approach to Positive-Unlabeled Learning: Turning Unlabeled Data into Positive rather than Negative
Miao Xu, Bingcong Li, Gang Niu, Bo Han, Masashi Sugiyama
http://arxiv.org/abs/1901.10155v1

• [cs.LG]Robust Learning from Untrusted Sources
Nikola Konstantinov, Christoph Lampert
http://arxiv.org/abs/1901.10310v1

• [cs.LG]Self-Supervised Deep Image Denoising
Samuli Laine, Jaakko Lehtinen, Timo Aila
http://arxiv.org/abs/1901.10277v1

• [cs.LG]Sliced generative models
Szymon Knop, Marcin Mazur, Jacek Tabor, Igor Podolak, Przemysław Spurek
http://arxiv.org/abs/1901.10417v1

• [cs.LG]Sparse Least Squares Low Rank Kernel Machines
Manjing Fang, Di Xu, Xia Hong, Junbin Gao
http://arxiv.org/abs/1901.10098v1

• [cs.LG]Structural Material Property Tailoring Using Deep Neural Networks
Oshin Olesegun, Ryan Noraas, Michael Giering, Nagendra Somanath
http://arxiv.org/abs/1901.10281v1

• [cs.LG]The CM Algorithm for the Maximum Mutual Information Classifications of Unseen Instances
Chenguang Lu
http://arxiv.org/abs/1901.09902v1

• [cs.LG]Towards Fair Deep Clustering With Multi-State Protected Variables
Bokun Wang, Ian Davidson
http://arxiv.org/abs/1901.10053v1

• [cs.LG]Trust Region-Guided Proximal Policy Optimization
Yuhui Wang, Hao He, Xiaoyang Tan, Yaozhong Gan
http://arxiv.org/abs/1901.10314v1

• [cs.LG]Using Pre-Training Can Improve Model Robustness and Uncertainty
Dan Hendrycks, Kimin Lee, Mantas Mazeika
http://arxiv.org/abs/1901.09960v1

• [cs.LG]Visualizing and Understanding Generative Adversarial Networks (Extended Abstract)
David Bau, Jun-Yan Zhu, Hendrik Strobelt, Bolei Zhou, Joshua B. Tenenbaum, William T. Freeman, Antonio Torralba
http://arxiv.org/abs/1901.09887v1

• [cs.MA]Designing a Multi-Objective Reward Function for Creating Teams of Robotic Bodyguards Using Deep Reinforcement Learning
Hassam Ullah Sheikh, Ladislau Bölöni
http://arxiv.org/abs/1901.09837v1

• [cs.NE]Minimax-optimal decoding of movement goals from local field potentials using complex spectral features
Marko Angjelichinoski, Taposh Banerjee, John Choi, Bijan Pesaran, Vahid Tarokh
http://arxiv.org/abs/1901.10397v1

• [cs.NE]Surrogate Gradient Learning in Spiking Neural Networks
Emre O. Neftci, Hesham Mostafa, Friedemann Zenke
http://arxiv.org/abs/1901.09948v1

• [cs.RO]A Minimalistic Approach to Segregation in Robot Swarms
Peter Mitrano, Jordan Burklund, Michael Giancola, Carlo Pinciroli
http://arxiv.org/abs/1901.10423v1

• [cs.RO]A Robot for Nondestructive Assay of Holdup Deposits in Gaseous Diffusion Piping
Heather Jones, Siri Maley, Mohammadreza Mousaei, David Kohanbash, Warren Whittaker, James Teza, Andrew Zhang, Nikhil Jog, William Whittaker
http://arxiv.org/abs/1901.10341v1

• [cs.RO]Dynamic Manipulation of Flexible Objects with Torque Sequence Using a Deep Neural Network
Kento Kawaharazuka, Toru Ogawa, Juntaro Tamura, Cota Nabeshima
http://arxiv.org/abs/1901.10142v1

• [cs.RO]How Shall I Drive? Interaction Modeling and Motion Planning towards Empathetic and Socially-Graceful Driving
Yi Ren, Steven Elliott, Yiwei Wang, Yezhou Yang, Wenlong Zhang
http://arxiv.org/abs/1901.10013v1

• [cs.RO]Iterative Learning Control for Fast and Accurate Position Tracking with a Soft Robotic Arm
Matthias Hofer, Lukas Spannagl, Raffaello D'Andrea
http://arxiv.org/abs/1901.10187v1

• [cs.RO]Multi-UAV Visual Coverage of Partially Known 3D Surfaces: Voronoi-based Initialization to Improve Local Optimizers
Alessandro Renzaglia, Jilles Dibangoye, Vincent Le Doze, Olivier Simon
http://arxiv.org/abs/1901.10272v1

• [cs.SI]A Systematic Analysis of Fine-Grained Human Mobility Prediction with On-Device Contextual Data
Huoran Li
http://arxiv.org/abs/1901.10167v1

• [cs.SI]Heterogeneous Network Motifs
Ryan A. Rossi, Nesreen K. Ahmed, Aldo Carranza, David Arbour, Anup Rao, Sungchul Kim, Eunyee Koh
http://arxiv.org/abs/1901.10026v1

• [cs.SI]Semantic and Influence aware k-Representative Queries over Social Streams
Yanhao Wang, Yuchen Li, Kian-Lee Tan
http://arxiv.org/abs/1901.10109v1

• [eess.IV]Detection of Alzheimers Disease from MRI using Convolutional Neural Networks, Exploring Transfer Learning And BellCNN
GuruRaj Awate
http://arxiv.org/abs/1901.10231v1

• [math.OC]A Homotopy Method for Motion Planning
Shenyu Liu, Mohamed Ali Belabbas
http://arxiv.org/abs/1901.10094v1

• [math.OC]Quasi-Newton Methods for Deep Learning: Forget the Past, Just Sample
Albert S. Berahas, Majid Jahani, Martin Takáč
http://arxiv.org/abs/1901.09997v1

• [math.OC]Stochastic Conditional Gradient Method for Composite Convex Minimization
Francesco Locatello, Alp Yurtsever, Olivier Fercoq, Volkan Cevher
http://arxiv.org/abs/1901.10348v1

• [math.PR]A conditional Berry-Esseen inequality
Thierry Klein, Agnès Lagnoux, Pierre Petit
http://arxiv.org/abs/1901.09911v1

• [math.PR]An accelerated variant of simulated annealing that converges under fast cooling
Michael C. H. Choi
http://arxiv.org/abs/1901.10269v1

• [math.PR]Log-minor distributions and an application to estimating mean subsystem entropy
Alice C. Schwarze, Philip S. Chodrow, Mason A. Porter
http://arxiv.org/abs/1901.09456v1

• [math.ST]Nonparametric estimation of jump rates for a specific class of Piecewise Deterministic Markov Processes
Nathalie Krell, Emeline Schmisser
http://arxiv.org/abs/1901.10166v1

• [q-bio.QM]Representation Transfer for Differentially Private Drug Sensitivity Prediction
Teppo Niinimäki, Mikko Heikkilä, Antti Honkela, Samuel Kaski
http://arxiv.org/abs/1901.10227v1

• [q-bio.QM]Simultaneous prediction of multiple outcomes using revised stacking algorithms
Li Xing, Mary Lesperance, Xuekui Zhang
http://arxiv.org/abs/1901.10153v1

• [quant-ph]Optimising Clifford Circuits with Quantomatic
Andrew Fagan, Ross Duncan
http://arxiv.org/abs/1901.10114v1

• [stat.AP]A new tidy data structure to support exploration and modeling of temporal data
Earo Wang, Dianne Cook, Rob J Hyndman
http://arxiv.org/abs/1901.10257v1

• [stat.ME]Centered Partition Process: Informative Priors for Clustering
Sally Paganin, Amy H. Herring, Andrew F. Olshan, David B. Dunson
http://arxiv.org/abs/1901.10225v1

• [stat.ME]GPMatch: A Bayesian Doubly Robust Approach to Causal Inference with Gaussian Process Covariance Function As a Matching Tool
Bin Huang, Chen Chen, Jinzhong Liu
http://arxiv.org/abs/1901.10359v1

• [stat.ME]Hierarchical network models for structured exchangeable interaction processes
Walter Dempsey, Brandon Oselio, Alfred Hero
http://arxiv.org/abs/1901.09982v1

• [stat.ME]Incorporating prior information and borrowing information in high-dimensional sparse regression using the horseshoe and variational Bayes
Gino B. Kpogbezan, Mark A. van de Wiel, Wessel N. van Wieringen, Aad W. van der Vaart
http://arxiv.org/abs/1901.10217v1

• [stat.ME]Inference after black box selection
Jelena Markovic, Jonathan Taylor, Jeremy Taylor
http://arxiv.org/abs/1901.09973v1

• [stat.ME]Inferring Heterogeneous Causal Effects in Presence of Spatial Confounding
Muhammad Osama, Dave Zachariah, Thomas Schön
http://arxiv.org/abs/1901.09919v1

• [stat.ME]Pairwise likelihood inference for the multivariate ordered probit model
Martina Bravo, Antonio Canale
http://arxiv.org/abs/1901.10186v1

• [stat.ME]Statistical inference of probabilistic origin-destination demand using day-to-day traffic data
Wei Ma, Zhen Qian
http://arxiv.org/abs/1901.10068v1

• [stat.ME]Testing Conditional Predictive Independence in Supervised Learning Algorithms
David S. Watson, Marvin N. Wright
http://arxiv.org/abs/1901.09917v1

• [stat.ML]A maximum principle argument for the uniform convergence of graph Laplacian regressors
Nicolas Garcia Trillos, Ryan Murray
http://arxiv.org/abs/1901.10089v1

• [stat.ML]Active learning for binary classification with variable selection
Zhanfeng Wang, Yumi Kwon, Yuan-chin Ivan Chang
http://arxiv.org/abs/1901.10079v1

• [stat.ML]Asynchronous Batch Bayesian Optimisation with Improved Local Penalisation
Ahsan S. Alvi, Binxin Ru, Jan Calliess, Stephen J. Roberts, Michael A. Osborne
http://arxiv.org/abs/1901.10452v1

• [stat.ML]Differentially Private Markov Chain Monte Carlo
Mikko A. Heikkilä, Joonas Jälkö, Onur Dikmen, Antti Honkela
http://arxiv.org/abs/1901.10275v1

• [stat.ML]General Fair Empirical Risk Minimization
Luca Oneto, Michele Donini, Massimiliano Pontil
http://arxiv.org/abs/1901.10080v1

• [stat.ML]Generative Adversarial Networks for geometric surfaces prediction in injection molding
Pierre Nagorny, Thomas Lacombe, Hugues Favreliere, Maurice Pillet, Eric Pairel, Ronan Le Goff, Marlene Wali, Jerome Loureaux, Patrice Kiener
http://arxiv.org/abs/1901.10178v1

• [stat.ML]Identifiability of Gaussian Structural Equation Models with Homogeneous and Heterogeneous Error Variances
Gunwoong Park
http://arxiv.org/abs/1901.10134v1

• [stat.ML]Improving Adversarial Robustness of Ensembles with Diversity Training
Sanjay Kariyappa, Moinuddin K. Qureshi
http://arxiv.org/abs/1901.09981v1

• [stat.ML]Kernel embedded nonlinear observational mappings in the variational mapping particle filter
Manuel Pulido, Peter Jan vanLeeuwen, Derek J. Posselt
http://arxiv.org/abs/1901.10426v1

• [stat.ML]Learning Schatten--Von Neumann Operators
Puoya Tabaghi, Maarten de Hoop, Ivan Dokmanić
http://arxiv.org/abs/1901.10076v1

• [stat.ML]Partially Exchangeable Networks and Architectures for Learning Summary Statistics in Approximate Bayesian Computation
Samuel Wiqvist, Pierre-Alexandre Mattei, Umberto Picchini, Jes Frellsen
http://arxiv.org/abs/1901.10230v1

• [stat.ML]Rank-one Convexification for Sparse Regression
Alper Atamturk, Andres Gomez
http://arxiv.org/abs/1901.10334v1

• [stat.ML]Sample Complexity Bounds for Recurrent Neural Networks with Application to Combinatorial Graph Problems
Nil-Jana Akpinar, Bernhard Kratzwald, Stefan Feuerriegel
http://arxiv.org/abs/1901.10289v1

• [stat.ML]Variational Characterizations of Local Entropy and Heat Regularization in Deep Learning
Nicolas Garcia Trillos, Zach Kaplan, Daniel Sanz-Alonso
http://arxiv.org/abs/1901.10082v1

相关文章

网友评论

      本文标题:今日学术视野(2019.1.31)

      本文链接:https://www.haomeiwen.com/subject/fvnhsqtx.html