美文网首页图神经网络生信分析工具包
网络生物学与人工智能 | Awesome-GNN

网络生物学与人工智能 | Awesome-GNN

作者: 切瓜少年 | 来源:发表于2020-07-10 10:06 被阅读0次

    2020/7/9,第一次更新,本文将总结笔者的研究方向一"多组学智能医疗"的子方向"网络生物学与人工智能"的分支——图神经网络(Graph Neural Networks, GNNs)方向学习过程中发现的优质资源,包括国自然、paper和应用方向、codes、开源框架、国际会议、期刊等。其中的部分文章将会新开辟文章分析。

    一、目录

    1 论文

    1.1 综述

    • Zhang Z, Cui P, Zhu W. Deep learning on graphs: A survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2020.
    • Bronstein M M, Bruna J, LeCun Y, et al. Geometric deep learning: going beyond euclidean data[J]. IEEE Signal Processing Magazine, 2017, 34(4): 18-42.
    • Wu Z, Pan S, Chen F, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020.
    • Hamilton W L, Ying R, Leskovec J. Representation learning on graphs: Methods and applications[J]. arXiv preprint arXiv:1709.05584, 2017.

    1.2 图神经网络架构

    • GGNN: Gated Graph Neural Networks (Li et al., 2015).
    • RGCN: Relational Graph Convolutional Networks (Schlichtkrull et al., 2017).
    • RGAT: Relational Graph Attention Networks (Veličković et al., 2018).
    • RGIN: Relational Graph Isomorphism Networks (Xu et al., 2019).
    • GNN-Edge-MLP: Graph Neural Network with Edge MLPs - a variant of RGCN in which messages on edges are computed using full MLPs, not just a single layer applied to the source state.
    • RGDCN: Relational Graph Dynamic Convolution Networks - a new variant of RGCN in which the weights of convolutional layers are dynamically computed.
    • GNN-FiLM: Graph Neural Networks with Feature-wise Linear Modulation - a new extension of RGCN with FiLM layers.

    1.3 GNN表征学习

    • Hu W, Liu B, Gomes J, et al. Strategies for Pre-training Graph Neural Networks[C]. ICLR. 2020.

    1.4 应用

    1.4.1 视觉与自然语言(VQA)
    • Narasimhan M, Lazebnik S, Schwing A. Out of the box: Reasoning with graph convolution nets for factual visual question answering[C]//NeurIPS. 2018: 2654-2665.
    • Norcliffe-Brown W, Vafeias S, Parisot S. Learning conditioned graph structures for interpretable visual question answering[C]//NeurIPS. 2018: 8334-8343.
    • Zhou Y, Ji R, Sun X, et al. Plenty Is Plague: Fine-Grained Learning for Visual Question Answering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019.
    1.4.2 医疗健康和生物化学(高通量组学)
    • Shang J, Xiao C, Ma T, et al. Gamenet: Graph augmented memory networks for recommending medication combination[C]//AAAI. 2019, 33: 1126-1133.
    • Yu E Y, Wang Y P, Fu Y, et al. Identifying critical nodes in complex networks via graph convolutional networks[J]. Knowledge-Based Systems, 2020: 105893.
    • Zitnik M, Leskovec J. Predicting multicellular function through multi-layer tissue networks[J]. Bioinformatics, 2017, 33(14): i190-i198.
    • Chereda H, Bleckmann A, Kramer F, et al. Utilizing Molecular Network Information via Graph Convolutional Neural Networks to Predict Metastatic Event in Breast Cancer[C]//GMDS. 2019: 181-186.
    • Wang C, Guo J, Zhao N, et al. A Cancer Survival Prediction Method Based on Graph Convolutional Network[J]. IEEE Transactions on NanoBioscience, 2019, 19(1): 117-126.
    • Zhang J, Hu X, Jiang Z, et al. Predicting Disease-related RNA Associations based on Graph Convolutional Attention Network[C]//BIBM. IEEE, 2019: 177-182.
    • Pan X, Shen H B. Inferring disease-associated microRNAs using semi-supervised multi-label graph convolutional networks[J]. Iscience, 2019, 20: 265-277.
    • Wang M, Wang H, Zheng H, et al. A knowledge-driven network-based analytical framework for the identification of rumen metabolites[J]. IEEE Transactions on NanoBioscience, 2020.
    • Liu H, Guan J, Li H, et al. Predicting the Disease Genes of Multiple Sclerosis Based on Network Representation Learning[J]. Frontiers in Genetics, 2020, 11.
    • Dai H, Li L, Zeng T, et al. Cell-specific network constructed by single-cell RNA sequencing data[J]. Nucleic acids research, 2019, 47(11): e62-e62.
    • Liu X, Chang X, Leng S, et al. Detection for disease tipping points by landscape dynamic network biomarkers[J]. National Science Review, 2019, 6(4): 775-785.
    • Yu X, Zeng T, Wang X, et al. Unravelling personalized dysfunctional gene network of complex diseases based on differential network model[J]. Journal of translational medicine, 2015, 13(1): 189.
    • Moon K R, Stanley III J S, Burkhardt D, et al. Manifold learning-based methods for analyzing single-cell RNA-sequencing data[J]. Current Opinion in Systems Biology, 2018, 7: 36-46.
    • Rhee S, Seo S, Kim S. Hybrid approach of relation network and localized graph convolutional filtering for breast cancer subtype classification[J]. arXiv preprint arXiv:1711.05859, 2017.

    2 开源框架

    相关文章

      网友评论

        本文标题:网络生物学与人工智能 | Awesome-GNN

        本文链接:https://www.haomeiwen.com/subject/fvyjcktx.html