美文网首页
pycaffe编译时我遇到的几个坑

pycaffe编译时我遇到的几个坑

作者: hurricanedjp | 来源:发表于2017-03-07 16:15 被阅读0次

    花了一天踩各种坑,记录以后自己好参考,简记几个主要的

    1. 先装几个依赖库

    • 网上随便搜搜都有
    sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler              
    sudo apt-get install --no-install-recommends libboost-all-dev
    sudo apt-get install libatlas-base-dev
    sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev
    

    2. anaconda来配置python环境(python2.7)

    • 先使用pip install -r requirements.txt 来安装pycaffe所需依赖库
      对比python/requirements.txt 安装还没安装的,其中leveldb不要装,不然会和上面的冲突。其中protobuf千万不要用conda install来安装,要用~/anaconda2/bin/pip install protobuf 安装,不然import caffe会出现ImportError: No module named google.protobuf.internal

    3. 文件Makefile.config与Makefile

    • Makefile.config
    ## Refer to http://caffe.berkeleyvision.org/installation.html
    # Contributions simplifying and improving our build system are welcome!
    
    # cuDNN acceleration switch (uncomment to build with cuDNN).
     USE_CUDNN := 1
    
    # CPU-only switch (uncomment to build without GPU support).
    # CPU_ONLY := 1
    
    # uncomment to disable IO dependencies and corresponding data layers
    # USE_OPENCV := 0
    # USE_LEVELDB := 0
    # USE_LMDB := 0
    
    # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
    #   You should not set this flag if you will be reading LMDBs with any
    #   possibility of simultaneous read and write
    # ALLOW_LMDB_NOLOCK := 1
    
    # Uncomment if you're using OpenCV 3 #需手动编译opencv3
     OPENCV_VERSION := 3   
    
    # To customize your choice of compiler, uncomment and set the following.
    # N.B. the default for Linux is g++ and the default for OSX is clang++
    # CUSTOM_CXX := g++
    
    # CUDA directory contains bin/ and lib/ directories that we need.
    CUDA_DIR := /usr/local/cuda
    # On Ubuntu 14.04, if cuda tools are installed via
    # "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
    # CUDA_DIR := /usr
    
    # CUDA architecture setting: going with all of them.
    # For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
    # For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
    CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
            -gencode arch=compute_20,code=sm_21 \
            -gencode arch=compute_30,code=sm_30 \
            -gencode arch=compute_35,code=sm_35 \
            -gencode arch=compute_50,code=sm_50 \
            -gencode arch=compute_52,code=sm_52 \
            -gencode arch=compute_60,code=sm_60 \
            -gencode arch=compute_61,code=sm_61 \
            -gencode arch=compute_61,code=compute_61
    
    # BLAS choice:
    # atlas for ATLAS (default)
    # mkl for MKL
    # open for OpenBlas
    BLAS := atlas
    # Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
    # Leave commented to accept the defaults for your choice of BLAS
    # (which should work)!
    # BLAS_INCLUDE := /path/to/your/blas
    # BLAS_LIB := /path/to/your/blas
    
    # Homebrew puts openblas in a directory that is not on the standard search path
    # BLAS_INCLUDE := $(shell brew --prefix openblas)/include
    # BLAS_LIB := $(shell brew --prefix openblas)/lib
    
    # This is required only if you will compile the matlab interface.
    # MATLAB directory should contain the mex binary in /bin.
     MATLAB_DIR := /usr/local/MATLAB
    # MATLAB_DIR := /Applications/MATLAB_R2012b.app
    
    # NOTE: this is required only if you will compile the python interface.
    # We need to be able to find Python.h and numpy/arrayobject.h.
    #PYTHON_INCLUDE := /usr/include/python2.7 \
            /usr/lib/python2.7/dist-packages/numpy/core/include
    # Anaconda Python distribution is quite popular. Include path:
    # Verify anaconda location, sometimes it's in root.
     ANACONDA_HOME := $(HOME)/anaconda2
     PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
             $(ANACONDA_HOME)/include/python2.7 \
             $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include
    
    # Uncomment to use Python 3 (default is Python 2)
    # PYTHON_LIBRARIES := boost_python3 python3.5m
    # PYTHON_INCLUDE := /usr/include/python3.5m \
    #                 /usr/lib/python3.5/dist-packages/numpy/core/include
    
    # We need to be able to find libpythonX.X.so or .dylib.
    # PYTHON_LIB := /usr/lib 
     PYTHON_LIB := $(ANACONDA_HOME)/lib
    
    # Homebrew installs numpy in a non standard path (keg only)
    # PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
    # PYTHON_LIB += $(shell brew --prefix numpy)/lib
    
    # Uncomment to support layers written in Python (will link against Python libs)
     WITH_PYTHON_LAYER := 1
    
    # Whatever else you find you need goes here.这里注意各个不要少,否则有你受的,对应Makefile有个地方要改(后面说)
    INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include /usr/include/hdf5/serial/
    LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial 
    
    # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
    # INCLUDE_DIRS += $(shell brew --prefix)/include
    # LIBRARY_DIRS += $(shell brew --prefix)/lib
    
    # NCCL acceleration switch (uncomment to build with NCCL)
    # https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)
    # USE_NCCL := 1
    
    # Uncomment to use `pkg-config` to specify OpenCV library paths.
    # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
    # USE_PKG_CONFIG := 1
    
    # N.B. both build and distribute dirs are cleared on `make clean`
    BUILD_DIR := build
    DISTRIBUTE_DIR := distribute
    
    # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
    # DEBUG := 1
    
    # The ID of the GPU that 'make runtest' will use to run unit tests.
    TEST_GPUID := 0
    
    # enable pretty build (comment to see full commands)
    Q ?= @
    
    • Makefile
    LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_serial_hl hdf5_serial opencv_core opencv_highgui opencv_imgproc opencv_imgcodecs
    

    4. ~/.bashrc与/etc/profile

    • ~/bashrc
    export PYTHONPATH=/home/tuxiang/caffe/python:$PYTHONPATH
    LD_LIBRARY_PATH=$HOME/caffe/build/lib:/usr/lib/x86_64-linux-gnu:$HOME/anaconda2/lib:$LD_LIBRARY_PATH
    
    # added by Anaconda2 4.3.0 installer
    export PATH="/home/tuxiang/anaconda2/bin:$PATH"
    
    • /etc/profile
    export PATH=/usr/local/cuda-8.0/bin:$PATH
    export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64:/usr/local/lib
    export LANG=zh_CN.UTF-8
    

    参考

    Caffe学习系列(13):数据可视化环境(python接口)配置

    另:关于python3.5的caffe安装可参考
    Python3.5 Anaconda3 Caffe深度学习框架搭建
    在 python3.5 下使用 Caffe
    Ubuntu 16.04 or 15.10 Installation Guide wiki的右侧有一些对应的情况,如GeForce GTX 1080, CUDA 8.0, Ubuntu 16.04, Caffe下安装的建议

    附一些python3.6遇到的错误

    我用的anoconda4.3(python3.6),实验室两个账户安装2.7和3.6

    • 如果使用的cuda-8.0,在Makefile.config中写成 CUDA_DIR := /usr/local/cuda-8.0
    • protobuf的问题如上面链接的博客所说,cpp和python的版本应该保持一致,实在不行去github下源码编译安装。
    • libboost的问题,参见上面博客
    • matplotlib和dateutil的问题,这个是我自己遇到的。
      anaconda里有默认安装的python-dateutil,删除旧的版本(1.5)。
      另外后面编译通过,import出现问题,显示ModuleNotFoundError: No module named 'matplotlib' 和 ImportError: matplotlib requires dateutil,但是已经安装了这两个版本。
      解决方法:/anaconda3/pkgs/matplotlib-2.0.0-np111py36_0/lib/python3.6/site-packages/下的所有matplotlib文件(夹)复制到/anaconda3/lib/python3.6/site-packages/下,对于python-dateutil也是如此。不知有没有其他方法,欢迎留言讨论

    相关文章

      网友评论

          本文标题:pycaffe编译时我遇到的几个坑

          本文链接:https://www.haomeiwen.com/subject/fwmmgttx.html