美文网首页
最优二叉树

最优二叉树

作者: 技术客栈 | 来源:发表于2020-07-28 22:23 被阅读0次

    一、概述

    针对数据结构中的最优二叉树章节,做出笔记,以支持后期的回顾和了解。主要囊括了如下部分:

    • 什么是哈弗曼
    • 怎么创建最优二叉树
    • 哈弗曼编码,用途

    二、讲解

    1、哈弗曼

    定义:
    树中带有权值,并且权值最小,路径最短的二叉树,也称为最优二叉树。

    如图:
    给定权值分别为 4、5、6、7 的A1、B1、C1、D1,可以构成几种或者多中的二叉树。

    这里写图片描述
    图a
    则该树的带权路径长度(WPL):41+53+73+62 = 52 这里写图片描述
    图b
    则该树的带权路径长度(WPL):71+62+43+53 = 46
    其他的就不在绘制,但是最终发现,每次以最小权值,构建出的二叉树WPL 最小,也就是最小二叉树。(权值越大,离根节点就越近)

    2、如何构建最优二叉树

    1.从已知结点个数中选择两个权值最小的两个节点,构成二叉树中的左子树、右子数

    2.由步骤1,中的左右子树构造一棵新的二叉树,与未使用过的结点或子树组成新的森林。

    3.重复步骤1、2,直到森林中构成一棵二叉树为止,
    该步骤论述生成的二叉树如图b。

    3、哈弗曼编码

    可以用作密文编码
    若有英文字母构成的密码是:“ACBCCACBCCDCBC”,其中A,B,C,D,分别用二进制码00,01,10,11,分别代替,则译出的二进制密码是“0010011010001001101011100110”,共28位。当然希望代码短,消除冗余度,而且唯一。为了解决这个问题,我们可以使用二叉树来是实现。

    首先我们将二叉树的左右分支分别定义为0、1。已知A、B、C、D所代表的权值分别为4、5、6、7,则构造的哈弗曼书为:


    这里写图片描述

    字母编码:A(110),B(111),C(10),D(0)

    我们需要说明的是哈弗曼并没有指定和规则说左右分支必须为0、1 的规则,所以我们可以指定左右分支为1、0,这样就是不同的字母编码。
    字母编码:A(001),B(000),C(01),D(1).

    综述:实现频度越高的字符,编码越短,而出现频度越低的字符,编码越长,这是合理的。
    更多请移步:https://blog.csdn.net/wlytctw/article/details/78741777

    相关文章

      网友评论

          本文标题:最优二叉树

          本文链接:https://www.haomeiwen.com/subject/fxtcrktx.html