美文网首页selector
iOS GCD信号量dispatch_semaphore_t

iOS GCD信号量dispatch_semaphore_t

作者: 齐舞647 | 来源:发表于2020-01-19 15:11 被阅读0次

    前言:
    在研究《iOS 性能监控(二)—— 主线程卡顿监控》中,
    发现有一些GCD信号量的知识之前没有好好梳理过。
    故本篇用来梳理一下GCD中信号量dispatch_semaphore_t相关的知识。


    一、信号量(Semaphore)简介

    信号量(Semaphore)是多线程环境下的一种保护设施,可以用来保证两个或多个关键代码不被并发调用。

    在进入一个关键代码段之前,线程必须获取一个信号量。一旦执行完毕,该线程就会释放信号量。等待下一个信号量被发送,线程才能继续获取到新信号量并再次执行关键代码段。

    • 要求:线程进入关键代码段前,必须要获取到一个信号量。(发信号signal与等信号wait应该要一一对应)
    • 作用:保证关键代码段不被并发调用。

    举个例子:
    一个停车场,只能容下5辆车。这时候,来了6辆车。只有前5辆能进去。第6辆车等待,当有一辆车离开停车场时,才能进入。
    这里,
    想进停车场 —— 创建信号,
    当前有车位 ,领卡进场 —— 发信号,
    当前无车位,排队等卡 —— 等信号,
    离开停车场 —— 销毁信号。

    通常来说,信号量有4种操作。

    1. 初始化信号(initialize/create
    2. 发信号(signal/post
    3. 等信号(wait/suspend
    4. 释放信号(destroy

    二、GCD信号量(dispatch_semphore_t)

    而在我们iOS开发中,想使用信号量,首先想到的就是GCD中的dispatch_semphore_t

    1. 创建信号量

    • 方法:dispatch_semaphore_create(long value)
    dispatch_semaphore_create(long value); //!< 创建信号量
    
    • 说明:
    参数 说明
    value 信号量的初始数量(>=0)。
    注意:传递一个小于零的值将会返回NULL。

    如果 value > 0,就相当于创建了个信号量,并同时发出value个信号。
    如果 value = 0,就相当于单纯仅仅创建了个信号量,还没发信号。
    如果 value < 0,直接failure,返回一个NULL。

    2. 发送信号量

    • 方法:dispatch_semaphore_signal(dispatch_semaphore_t dsema);
    dispatch_semaphore_signal(dispatch_semaphore_t dsema); //!< 发送信号量
    
    • 说明:
    参数 说明
    dispatch_semaphore_t 传入所要发送信号的信号量。
    dispatch_semaphore_t的信号计数+1。

    3. 等待信号量

    • 方法:dispatch_semaphore_wait(dispatch_semaphore_t dsema, dispatch_time_t timeout);
    dispatch_semaphore_wait(dispatch_semaphore_t dsema, dispatch_time_t timeout); //!< 等待信号量
    
    • 说明:
    参数 说明
    dispatch_semaphore_t 传入所要等待信号的信号量。
    dispatch_semaphore_t的信号计数-1。
    dispatch_time_t 超时等待时间。超过该时间就返回非0,并会直接往下执行。
    也可以设置为DISPATCH_TIME_FOREVER,永久等待。
    返回值 说明
    Int 成功收到信号返回0,超时未收到返回非0。

    三、信号量的应用

    使用信号量使“异步”线程完成“同步”操作。

    即使是在多线程并发的场景,也可以通过控制信号量来保证操作的同步。

    举个例子:通常,我们要实现异步线程完成同步操作。有两种做法:

    1. 第一种:使用串行队列+异步操作。

    这种情况只会开启一条子线程,并按顺序执行串行操作。

        dispatch_queue_t queue = dispatch_queue_create("serial", DISPATCH_QUEUE_SERIAL);
        dispatch_async(queue, ^{
            NSLog(@"111:%@",[NSThread currentThread]);
        });
        dispatch_async(queue, ^{
            NSLog(@"222:%@",[NSThread currentThread]);
        });
        dispatch_async(queue, ^{
            NSLog(@"333:%@",[NSThread currentThread]);
        });
    

    这种方式有些缺陷:

    第一:
    因为是异步操作,所以会开启一个新的子线程,
    同时又是串行队列,所以只会开启一条子线程进行同步操作。
    丧失了多线程的优势。

    第二:
    需要写在一个方法里去做,
    而实际开发中,可能异步分布在各个方法中,但同时又想串行去执行。

    2. 第二种:使用信号量,控制多线程下的同步操作。

        dispatch_semaphore_t sem = dispatch_semaphore_create(0);
        dispatch_async(dispatch_get_global_queue(0, 0), ^{
            
            NSLog(@"任务1:%@",[NSThread currentThread]);
            dispatch_semaphore_signal(sem);
        });
        
        dispatch_semaphore_wait(sem, DISPATCH_TIME_FOREVER);
        
        dispatch_async(dispatch_get_global_queue(0, 0), ^{
            NSLog(@"任务2:%@",[NSThread currentThread]);
            dispatch_semaphore_signal(sem);
        });
        
        dispatch_semaphore_wait(sem, DISPATCH_TIME_FOREVER);
        
        dispatch_async(dispatch_get_global_queue(0, 0), ^{
            NSLog(@"任务3:%@",[NSThread currentThread]);
        });
    

    当然,这里只是个例子。在实际应用中,
    发送信号(signal),与等待信号(wait)往往是成对出现的。
    同时,通常是分开在不同的方法里调用。

    例如,在《iOS 性能监控(二)—— 主线程卡顿监控》当中:
    监控主线程的CommonModes发生变化时,会发送信号。
    同时会开启一条子线程的loop持续监听CommonModes的变化,等待信号。
    在某些条件下,超时等待时,就说明主线程当前处于卡顿状态。
    保存当前的主线程方法调用堆栈就达到了监控的目的。

    PS:详细的实现,可在QiLagMonitor源码中查看。

    相关文章

      网友评论

        本文标题:iOS GCD信号量dispatch_semaphore_t

        本文链接:https://www.haomeiwen.com/subject/fzmgactx.html