美文网首页
hashMap解读1

hashMap解读1

作者: 在暗处凝视世间喧华繁闹 | 来源:发表于2020-03-02 11:25 被阅读0次
    package com.xinye.web.controller.redandblack;/*
                                                     * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
                                                     * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
                                                     */
    
    import java.io.IOException;
    import java.io.InvalidObjectException;
    import java.io.Serializable;
    import java.lang.reflect.ParameterizedType;
    import java.lang.reflect.Type;
    import java.util.AbstractMap;
    import java.util.Map;
    import java.util.function.BiConsumer;
    import java.util.function.BiFunction;
    import java.util.function.Consumer;
    import java.util.function.Function;
    
    /**
     * 基于哈希表的Map接口实现lei 。
     * 该类实现提供了所有可选的map操作且允许null值和null键:
     * (HashMap 类大致等同于hashtable,除了它是不同步(线程不安全)且允许为空。)
     * 此类不保证先后的顺序是无须的;特别是,它不能保证会一直保持不变(扩容的时候顺序会产生变化)。)
     * 该类提供的的基本方法get和put,假设将元素 hash后适当地分散在存储桶(buckets)中。迭代结束查看集合视图需要的时间
     * 与HashMap实例的“容量”(存储桶数)加上其大小(键值映射数)成比例。因此,这俩参数对迭代性能是影响很大。
     * HashMap的实例有两个参数影响 性能:初始容量和负载系数。这个初始容量是哈希表中的存储桶数,
     * 初始容量只是创建哈希表时的容量。负载因子是在哈希表的容量自动增加之前,允许哈希表获得的满容量的度量。
     * 当哈希表中的条目数超过加载因子和 在当前容量下,哈希表将被重新灰化(即重建内部数据结构),
     * 重构号哈希表的存储桶数(size)大约是之前的存储桶数的两倍。
     * ----------------------------------------------------------------------------
     * 一般来说,默认的荷载系数(.75)提供了一个很好的时间和空间成本之间的权衡。较高的值会减少空间开销,
     * 但会增加查找成本(反映在HashMap类的大多数操作中,包括get和put)。中的预期条目数在设置初始容量时,
     * 应考虑map及其负载系数,以尽量减少再灰化操作的次数。如果使用量除以初始容量小于负载系数 ,将不会发生再扩容操作!
     * 如果许多映射要存储在HashMap中 例如,创建具有足够大容量的映射将允许更有效地存储映射,
     * 而不是让它根据需要执行自动重新灰化以扩展表。请注意,使用多个具有相同{@code hashCode()}的键
     * (hash冲突:那么他们确定的索引位置就相同,这时判断他们的key是否相同,如果不相同,这时就是产生了hash冲突)
     * 肯定会降低任何哈希表的性能。为了改善影响,当键是{@link Comparable}时(当键实现了Comparable类的compareTo方法),
     * 这个类可以使用键之间的比较顺序来帮助打破联系提高性能。
     * ----------------------------------------------------------------------------
     * 请注意,此实现不同步(线程不安全)。
     * 如果多个线程同时访问哈希映射,并且至少有一个线程在结构上修改了该映射,则必须在外部对其进行同步。
     * (结构修改是添加或删除一个或多个映射的任何操作;仅更改与实例已包含的键相关联的值不是结构修改。)
     * 这通常通过在自然封装映射的某个对象上进行同步来完成。
     * 如果不存在此类对象,则应使用{@link Collections#synchronizedMap Collections.synchronizedMap}
     * 方法“包装”映射。最好在创建时执行此操作,以防止意外地对映射进行非同步访问:
     * Map m=Collections.synchronizedMap(new HashMap(...));
     * ----------------------------------------------------------------------------
     * 这个类的所用的“collection”里的的迭代器都是快速失败的:如果在迭代器创建之后的任何时候对映射进行了结构上的修改,
     * 除了通过迭代器自己的remove方法之外,迭代器将抛出{@link ConcurrentModificationException}。
     * 因此,在面对并发修改时,迭代器会快速而干净地失败,而不是在将来某个不确定的时间冒着任意的、不确定的行为的风险。
     * ----------------------------------------------------------------------------
     * 注意,不能保证迭代器的fail-fast行为(fail-fast机制),因为通常情况下,在存在不同步的并发修改的情况下,
     * 不可能做出任何硬保证。 fail-fast机制在尽最大努力的基础上抛出ConcurrentModificationException。
     * 因此,编写依赖于此异常的程序以确保其正确性是错误的:迭代器的快速失败行为应该只用于检测错误
     */
    public class HashMap<K, V> extends AbstractMap<K, V> implements Map<K, V>, Cloneable, Serializable {
    
        private static final long serialVersionUID = 362498820763181265L;
    
        /*
         * map一般作为一个个桶组成的hash表,当数量很多的时候,会转变成TreeNodes(树节点),这样结构上类似TreeMap.
         * TreeNodes可能进行了转化,使用起来和其他非TreeNodes一样,但是提供了较快速度的遍历效率.
         * 然而大多数场景下出现很多元素拥挤的情况不会出现,可是检查是否是tree bins将会在使用各个方法时消耗性能.
         * 那就要看这个判断的性能是不是需要很大消耗了.
         * 我们知道hashmap的实现时数组+链表,在链表拥挤情况时,将它传变成树,有助于查询,但是如果是加减元素就不好说了.
         * -------------------------
         * Tree bins排序核心依赖hashCode,这里说的排序其实就是算出自己在数组中的下标,
         * 如果有两个元素都class C implements Comparable<C>,compareTo 方法会被用于排序.
         * (我们使用反射去见这个类型,方法:comparableClassFor)
         * 无论在不同hash值或和排序的情况下都证明算法复杂度是 O(log n),所以tree bins 带来的复杂度是值得的.
         * 因此,即时在hashCode出来的值不够充分的分散,因为是树的原因,性能变差的过程也会比较平滑.
         * --------------------------
         * 当一个桶里有足够多的节点是才会将结构转成tree,目前TREEIFY_THRESHOLD默认设置为8,当变少的时候,也会转换为
         * 原来平的链表结构.如果hashCodes是均匀分散的,这种转成tree基本用不到. 理想的分布应该是泊松分布.
         * 这里有点难理解,查了很多资料,有了以下详细解释: 这里提到泊松分布,可以看wiki,也可以看下推荐的博文:
         * http://www.ruanyifeng.com/blog/2015/06/poisson-distribution.html
         * 在文档上无法用数学公式和图片,所以下面对注释众提到的公式进行解析:
         * exp : 指数函数
         * pow : 乘方运算
         * factorial : 阶乘
         * (exp(-0.5) * pow(0.5, k) / factorial(k)) 这个公式是可以对应到泊松分布的公式的.
         * 这个0.5的意思是表示在这里假定元素数量占桶数量的百分50,而threshold是0.75,元素在某个桶里的概率是0.5.
         * 所以我们以这个概率为基础数据算出,桶里有1-8个元素的概率,如数据.当有8个元素在一个桶里时的概率非常低,
         * 在这里也解释了,如果出现需要将链表转成树的情况出现,已经表示不合理的场景出现了.
         * --------------
         * 一般树的根是第一个加入的node,也有其他情况,比如remove掉了root,不过可以重新分配出root.
         * 这里加一下信息:
         * redis中,在处理这种情况时是把新加入的元素放在链表的头部,在它的场景里最近加入的元素越容易被用到
         * 所有的内部方法都可以接受一个hashcode来做为参数,如此内部调用的时候完全可以通过这个参数而不需要重新计算
         * hashCodes.大部分内部方法也接受一个tab参数,一般这个有是现在的表的,在resizing或converting的时候也有可能代表新表或老表的.
         */
    
        /**
         * 默认初始capacity,必须是2的幂.
         */
        static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
    
        /**
         * The maximum capacity, used if a higher value is implicitly specified
         * by either of the constructors with arguments.
         * capacity最大值2的30幂次
         */
        static final int MAXIMUM_CAPACITY = 1 << 30;
    
        /**
         * 负载因子
         */
        static final float DEFAULT_LOAD_FACTOR = 0.75f;
    
        /**
         * The bin count threshold for using a tree rather than list for a
         * bin. Bins are converted to trees when adding an element to a
         * bin with at least this many nodes. The value must be greater
         * than 2 and should be at least 8 to mesh with assumptions in
         * tree removal about conversion back to plain bins upon
         * shrinkage.
         * 当一个链表上的元素到8个的时候,会转成树结构
         */
        static final int TREEIFY_THRESHOLD = 8;
    
        /**
         * The bin count threshold for untreeifying a (split) bin during a
         * resize operation. Should be less than TREEIFY_THRESHOLD, and at
         * most 6 to mesh with shrinkage detection under removal.
         * 当元素减小到6个时会从树转成链表
         */
        static final int UNTREEIFY_THRESHOLD = 6;
    
        /**
         * The smallest table capacity for which bins may be treeified.
         * (Otherwise the table is resized if too many nodes in a bin.)
         * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
         * between resizing and treeification thresholds.
         * 当发生链表转树这种情况,需要满足capacity必须大于等于64(8的四倍)
         * * 容量大于这个值时,表中的桶才能进行树形化
         */
        static final int MIN_TREEIFY_CAPACITY = 64;
    
        /**
         * Basic hash bin node, used for most entries. (See below for
         * TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
         * 这个就是核心数据结构,一个node对应一个key-value元素,hash表示自己在哪个桶里的,next表示链表结构.
         */
        static class Node<K, V> implements Map.Entry<K, V> {
    
            final int hash;
            final K key;
            V value;
            Node<K, V> next;
    
            Node(int hash, K key, V value, Node<K, V> next) {
    
                this.hash = hash;
                this.key = key;
                this.value = value;
                this.next = next;
            }
    
            public final K getKey() {
    
                return key;
            }
    
            public final V getValue() {
    
                return value;
            }
    
            public final String toString() {
    
                return key + "=" + value;
            }
    
            public final int hashCode() {
    
                return Objects.hashCode(key) ^ Objects.hashCode(value);
            }
    
            public final V setValue(V newValue) {
    
                V oldValue = value;
                value = newValue;
                return oldValue;
            }
    
            public final boolean equals(Object o) {
    
                if (o == this) {
                    return true;
                }
                if (o instanceof Map.Entry) {
                    Map.Entry<?, ?> e = (Map.Entry<?, ?>) o;
                    if (Objects.equals(key, e.getKey()) &&
                            Objects.equals(value, e.getValue()))
                        return true;
                }
                return false;
            }
        }
    
        /* ---------------- Static utilities -------------- */
    
        /**
         * Computes key.hashCode() and spreads (XORs) higher bits of hash
         * to lower. Because the table uses power-of-two masking, sets of
         * hashes that vary only in bits above the current mask will
         * always collide. (Among known examples are sets of Float keys
         * holding consecutive whole numbers in small tables.) So we
         * apply a transform that spreads the impact of higher bits
         * downward. There is a tradeoff between speed, utility, and
         * quality of bit-spreading. Because many common sets of hashes
         * are already reasonably distributed (so don't benefit from
         * spreading), and because we use trees to handle large sets of
         * collisions in bins, we just XOR some shifted bits in the
         * cheapest possible way to reduce systematic lossage, as well as
         * to incorporate impact of the highest bits that would otherwise
         * never be used in index calculations because of table bounds.
         * 代码中是将key的hashCode和高16位进行了异或操作
         * 注意到我们table的长度必然为2的幂,这里有一点要注意在取模的操作里如果是和素数(质数)取模比和合数取模冲突的
         * 概率要低.
         * 合数既然可以由自身以外的数除尽,哪些可以相乘得到这个合数,这些乘数或乘数的倍数,都是潜在引起冲突的值.
         * 所以作者解释了把高位的16位下移,做一个异或操作(XOR),保证了高位参与hash值取模时参加计算,这是在权衡了速度,
         * 质量和实用性上进行的妥协.
         */
        static final int hash(Object key) {
    
            int h;
            // 对key的hashCode得到值再修饰一下
            return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
        }
    
        /**
         * Returns x's Class if it is of the form "class C implements
         * Comparable<C>", else null.
         * 如果实现了Comparable,返回x的实际类型,也就是Class<C>,否则返回null.
         * 例子:public class AppVersion implements Comparable<AppVersion>
         */
        static Class<?> comparableClassFor(Object x) {
    
            if (x instanceof Comparable) {
                Class<?> c;
                Type[] ts, as;
                Type t;
                ParameterizedType p;
                if ((c = x.getClass()) == String.class) { // bypass checks
                    return c;
                }
                if ((ts = c.getGenericInterfaces()) != null) {
                    for (int i = 0; i < ts.length; ++i) {
                        if (((t = ts[i]) instanceof ParameterizedType) &&
                                ((p = (ParameterizedType) t).getRawType() == Comparable.class) &&
                                (as = p.getActualTypeArguments()) != null &&
                                as.length == 1 && as[0] == c) { // type arg is c
                            return c;
                        }
                    }
                }
            }
            return null;
        }
    
        /**
         * Returns k.compareTo(x) if x matches kc (k's screened comparable
         * class), else 0.
         */
        @SuppressWarnings({ "rawtypes", "unchecked" }) // for cast to Comparable
        static int compareComparables(Class<?> kc, Object k, Object x) {
    
            return (x == null || x.getClass() != kc ? 0 : ((Comparable) k).compareTo(x));
        }
    
        /**
         * 返回一个2的幂大小的数,这个数比cap大.
         */
        static final int tableSizeFor(int cap) {
            /**
             * 先解释或运算|=:
             * int a = 5; // 0000 0101
             * int b = 3; // 0000 0011
             * a |= b; // 0000 00111
             */
    
            /**
             * 再解释且运算|=:
             * int a = 5; // 0000 0101
             * int b = 3; // 0000 0011
             * a &= b; // 0000 0001
             */
            /**
             * 二级制中,与高位相对,表示二进制数字右边部分。
             */
    
            // cap的二进制里低位全部转成1
            // 解释一个:n |= n >>> 1 ==> n = n>>>1 | n
            // 假设n= 0001 xxxx xxxx xxxx
            // 计算:0001 xxxx xxxx xxxx | 0000 1xxx xxxx xxxx => 0001 1xxx xxxx xxxx
            // 此时最高位就是两个连续的1,然后操作n |= n >>> 2,那么就变成 0001 111x xxxx xxxx
            // 所以变1的节奏个数是:1 2 4 8 16 相加 31 刚好足够把32位的一个值低位全部变成1.
            // 只不过cap最大也就是2的30次
            int n = cap - 1;
            n |= n >>> 1;
            n |= n >>> 2;
            n |= n >>> 4;
            n |= n >>> 8;
            n |= n >>> 16;
            return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
        }
    
        /* ---------------- Fields -------------- */
    
        /**
         * The table, initialized on first use, and resized as
         * necessary. When allocated, length is always a power of two.
         * (We also tolerate length zero in some operations to allow
         * bootstrapping mechanics that are currently not needed.)
         * 所以我们说hashmap的核心数据结构就是一个装着node的数组 我们注意到字段使用transient修饰,不参与序列化,
         * 可是hashmap继承Serializable.原因是hashcode操作依赖jvm所处的环境因素,不同环境可能有不同的hash值,
         * 做一现成存储的内容既是序列化也无法通用.所以hashmap自己实现了writeObject和readObject
         * 这里就需要知道java在序列化和反序列化一个类时是先调用writeObject和readObject,如果没有默认调用的
         * 是ObjectOutputStream的defaultWriteObject以及ObjectInputStream的defaultReadObject方法
         */
        transient Node<K, V>[] table;
    
        /**
         * Holds cached entrySet(). Note that AbstractMap fields are used
         * for keySet() and values().
         */
        transient Set<Map.Entry<K, V>> entrySet;
    
        /**
         * The number of key-value mappings contained in this map.
         * 记录有多少元素存进来了
         */
        transient int size;
    
        /**
         * The number of times this HashMap has been structurally modified
         * Structural modifications are those that change the number of mappings in
         * the HashMap or otherwise modify its internal structure (e.g.,
         * rehash). This field is used to make iterators on Collection-views of
         * the HashMap fail-fast. (See ConcurrentModificationException).
         * 前面提到过在迭代的时候如果改变了map的结构是要抛异常的,这个数用于记录改变的次数.
         */
        transient int modCount;
    
        /**
         * The next size value at which to resize (capacity * load factor).
         * 判断什么时候可以resize了
         *
         * @serial
         */
        // (The javadoc description is true upon serialization.
        // Additionally, if the table array has not been allocated, this
        // field holds the initial array capacity, or zero signifying
        // DEFAULT_INITIAL_CAPACITY.)
        int threshold;
    
        /**
         * The load factor for the hash table.
         * 负载因子
         * 
         * @serial
         */
        final float loadFactor;
    
        /* ---------------- Public operations -------------- */
    
        /**
         * Constructs an empty <tt>HashMap</tt> with the specified initial
         * capacity and load factor.
         *
         * @param initialCapacity
         *            the initial capacity
         * @param loadFactor
         *            the load factor
         * @throws IllegalArgumentException
         *             if the initial capacity is negative
         *             or the load factor is nonpositive
         */
        public HashMap(int initialCapacity, float loadFactor) {
    
            if (initialCapacity < 0)
                throw new IllegalArgumentException("Illegal initial capacity: " +
                        initialCapacity);
            if (initialCapacity > MAXIMUM_CAPACITY)
                initialCapacity = MAXIMUM_CAPACITY;
            if (loadFactor <= 0 || Float.isNaN(loadFactor))
                throw new IllegalArgumentException("Illegal load factor: " +
                        loadFactor);
            this.loadFactor = loadFactor;
            this.threshold = tableSizeFor(initialCapacity);
        }
    
        /**
         * Constructs an empty <tt>HashMap</tt> with the specified initial
         * capacity and the default load factor (0.75).
         *
         * @param initialCapacity
         *            the initial capacity.
         * @throws IllegalArgumentException
         *             if the initial capacity is negative.
         */
        public HashMap(int initialCapacity) {
    
            this(initialCapacity, DEFAULT_LOAD_FACTOR);
        }
    
        /**
         * Constructs an empty <tt>HashMap</tt> with the default initial capacity
         * (16) and the default load factor (0.75).
         */
        public HashMap() {
    
            this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
        }
    
        /**
         * Constructs a new <tt>HashMap</tt> with the same mappings as the
         * specified <tt>Map</tt>. The <tt>HashMap</tt> is created with
         * default load factor (0.75) and an initial capacity sufficient to
         * hold the mappings in the specified <tt>Map</tt>.
         * 参数为一个map的构造函数,新的HashMap负载因子为0.75,参数不能为null
         * 
         * @param m
         *            the map whose mappings are to be placed in this map
         * @throws NullPointerException
         *             if the specified map is null
         */
        public HashMap(Map<? extends K, ? extends V> m) {
    
            this.loadFactor = DEFAULT_LOAD_FACTOR;
            putMapEntries(m, false);
        }
    
        /**
         * Implements Map.putAll and Map constructor
         * putAll也调用这个方法.evict为false时代表构造函数调用
         *
         * @param m
         *            the map
         * @param evict
         *            false when initially constructing this map, else
         *            true (relayed to method afterNodeInsertion).
         */
        final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
    
            int s = m.size();
            if (s > 0) {
                if (table == null) { // pre-size
                    float ft = ((float) s / loadFactor) + 1.0F;
                    int t = ((ft < (float) MAXIMUM_CAPACITY) ? (int) ft : MAXIMUM_CAPACITY);
                    if (t > threshold)
                        threshold = tableSizeFor(t);
                } else if (s > threshold) // 提前做了一次resize
                    resize();
                for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
                    K key = e.getKey();
                    V value = e.getValue();
                    // 调用内部put方法 hash(key)方法先处理下key
                    putVal(hash(key), key, value, false, evict);
                }
            }
        }
    
        /**
         * Returns the number of key-value mappings in this map.
         *
         * @return the number of key-value mappings in this map
         */
        public int size() {
    
            return size;
        }
    
        /**
         * Returns <tt>true</tt> if this map contains no key-value mappings.
         *
         * @return <tt>true</tt> if this map contains no key-value mappings
         */
        public boolean isEmpty() {
    
            return size == 0;
        }
    
        /**
         * Returns the value to which the specified key is mapped,
         * or {@code null} if this map contains no mapping for the key.
         * <p>
         * More formally, if this map contains a mapping from a key
         * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
         * key.equals(k))}, then this method returns {@code v}; otherwise
         * it returns {@code null}. (There can be at most one such mapping.)
         * <p>
         * A return value of {@code null} does not <i>necessarily</i>
         * indicate that the map contains no mapping for the key; it's also
         * possible that the map explicitly maps the key to {@code null}.
         * The {@link #containsKey containsKey} operation may be used to
         * distinguish these two cases.
         * 获取key对应的value,这里返回null不一定代表map里没有这个元素,可能是value本来就是null.
         *
         * @see #put(Object, Object)
         */
        public V get(Object key) {
    
            Node<K, V> e;
            return (e = getNode(hash(key), key)) == null ? null : e.value;
        }
    
        /**
         * Implements Map.get and related methods
         *
         * @param hash
         *            hash for key
         * @param key
         *            the key
         * @return the node, or null if none
         */
        final Node<K, V> getNode(int hash, Object key) {
    
            Node<K, V>[] tab;
            Node<K, V> first, e;
            int n;
            K k;
            if ((tab = table) != null && (n = tab.length) > 0 &&
                    (first = tab[(n - 1) & hash]) != null) {
                if (first.hash == hash && // always check first node
                        ((k = first.key) == key || (key != null && key.equals(k))))
                    return first;
                if ((e = first.next) != null) {
                    if (first instanceof TreeNode)
                        return ((TreeNode<K, V>) first).getTreeNode(hash, key);
                    do {
                        if (e.hash == hash &&
                                ((k = e.key) == key || (key != null && key.equals(k))))
                            return e;
                    } while ((e = e.next) != null);
                }
            }
            return null;
        }
    
        /**
         * Returns <tt>true</tt> if this map contains a mapping for the
         * specified key.
         *
         * @param key
         *            The key whose presence in this map is to be tested
         * @return <tt>true</tt> if this map contains a mapping for the specified
         *         key.
         */
        public boolean containsKey(Object key) {
    
            return getNode(hash(key), key) != null;
        }
    
        /**
         * Associates the specified value with the specified key in this map.
         * If the map previously contained a mapping for the key, the old
         * value is replaced.
         *
         * @param key
         *            key with which the specified value is to be associated
         * @param value
         *            value to be associated with the specified key
         * @return the previous value associated with <tt>key</tt>, or
         *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
         *         (A <tt>null</tt> return can also indicate that the map
         *         previously associated <tt>null</tt> with <tt>key</tt>.)
         */
        public V put(K key, V value) {
    
            return putVal(hash(key), key, value, false, true);
        }
    
        /**
         * Implements Map.put and related methods
         * put方法调用.
         * onlyIfAbsent参数用于putIfAbsent方法调用时使用true,表示是否替换
         *
         * @paramhash后的key值
         * @param 原来的key
         * @param value值
         * @param 如果为true,则不更改现有值(key重复不覆盖原有的值)
         * @param 钩子方法,这在HashMap中是个空方法,但是在其子类LinkedHashMap中会被Override
         * @return 返回null 或者上一次的值
         */
        final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                boolean evict) {
    
            Node<K, V>[] tab;
            Node<K, V> p;
            int n, i;
            if ((tab = table) == null || (n = tab.length) == 0)
                n = (tab = resize()).length;// 若当前哈希数组table的长度为0,则进行扩容
    
            if ((p = tab[i = (n - 1) & hash]) == null)// 确定输入的hash在哈希数组中对应的下标i
                // 若数组该位置之前没有被占用,则新建一个节点放入,插入完成。
                tab[i] = newNode(hash, key, value, null);
            else {// 桶内已经有元素情况
                Node<K, V> e;
                K k;
                if (p.hash == hash &&
                        ((k = p.key) == key || (key != null && key.equals(k))))
                    e = p;// 放入元素和头元素相同,进行替换
    
                else if (p instanceof TreeNode)// 不相同,则判断是否为TreeNode
    
                    /**
                     * 若该位置的第一个节点p为TreeNode类型,说明这里存放的是一棵红黑树,p为根节点。
                     * 于是交给putTreeVal方法来完成后续操作,该方法下文会有详述
                     **/
    
                    e = ((TreeNode<K, V>) p).putTreeVal(this, tab, hash, key, value);
                else {
                    // 走到这里,说明p不匹配且是一个链表的头结点,该遍历链表了
                    // 链表的情况,这里是先进行循环,在循环的过程中判断出元素超过TREEIFY_THRESHOLD则进行treeifyBin操作
                    for (int binCount = 0;; ++binCount) {
                        /** e指向p的下一个节点 **/
                        if ((e = p.next) == null) {
                            // 当next是null的时候就是尾部了,这里就是把新放入的元素加到链表尾部的操作
                            p.next = newNode(hash, key, value, null);
                            if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                                // treeifyBin操作 转换成tree结构
    
                                /**
                                 * 若插入后,该桶中的节点个数已达到了树化阈值
                                 * 则对该桶进行树化。该部分源码下文会有详述
                                 **/
    
                                treeifyBin(tab, hash);
                            break;
                        }
                        // 这里判断已经有相同key的元素
                        if (e.hash == hash &&
                                ((k = e.key) == key || (key != null && key.equals(k))))
                            /**
                             * 匹配成功,我们需要用新的value来覆盖e节点
                             **/
                            break;
    
                        p = e; // 循环继续
                    }
                }
                // 若执行到此时e不为空,则说明在map中找到了与key相匹配的节点e
                if (e != null) { // existing mapping for key
                    V oldValue = e.value;// 暂存e节点当前的值为oldValue
                    // 这里处理onlyIfAbsent,先新建一个node,然后再判断onlyIfAbsent,来决定是否替换原来的元素.
                    // 注意如果原来的元素的value是会替换掉的!
                    if (!onlyIfAbsent || oldValue == null)
                        e.value = value;
                    // 钩子方法 LinkedHashMap使用
                    afterNodeAccess(e);
                    return oldValue;
                }
            }
            /**** --执行到此处说明没有匹配到已存在节点,一定是有新节点插入-- ****/
            ++modCount; // 结构操作数加一
            // 触发resize
            if (++size > threshold)
                resize();// 插入后,map中的节点数加一,若此时已达阈值,则扩容
            afterNodeInsertion(evict);// 同样的钩子方法,通知子类有新节点插入
            return null;// 同样的钩子方法,通知子类有新节点插入
        }
    
        /**
         * Initializes or doubles table size. If null, allocates in
         * accord with initial capacity target held in field threshold.
         * Otherwise, because we are using power-of-two expansion, the
         * elements from each bin must either stay at same index, or move
         * with a power of two offset in the new table.
         * 初始化或倍增table的长度,因为长度遵守2的幂,所以元素的在resize后的新位置要么在远处要么移动2的幂次位置.
         * resize是map核心算法之一,它决定这map在扩容时的性能.如果是一个膨胀速度快的map,对resize的要求就很高了.
         *
         * @return the table
         */
        final Node<K, V>[] resize() {
    
            Node<K, V>[] oldTab = table;
            int oldCap = (oldTab == null) ? 0 : oldTab.length;
            int oldThr = threshold;
            int newCap, newThr = 0;
            if (oldCap > 0) {
                if (oldCap >= MAXIMUM_CAPACITY) {
                    threshold = Integer.MAX_VALUE;
                    return oldTab;
                } else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                        oldCap >= DEFAULT_INITIAL_CAPACITY)
                    newThr = oldThr << 1; // double threshold
            } else if (oldThr > 0) // initial capacity was placed in threshold
                newCap = oldThr;
            else { // zero initial threshold signifies using defaults
                newCap = DEFAULT_INITIAL_CAPACITY;
                newThr = (int) (DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
            }
            if (newThr == 0) {
                float ft = (float) newCap * loadFactor;
                newThr = (newCap < MAXIMUM_CAPACITY && ft < (float) MAXIMUM_CAPACITY ? (int) ft : Integer.MAX_VALUE);
            }
            threshold = newThr;
            @SuppressWarnings({ "rawtypes", "unchecked" })
            Node<K, V>[] newTab = (Node<K, V>[]) new Node[newCap];
            table = newTab;
            if (oldTab != null) {
                for (int j = 0; j < oldCap; ++j) {
                    Node<K, V> e;
                    if ((e = oldTab[j]) != null) {
                        oldTab[j] = null;
                        if (e.next == null)
                            newTab[e.hash & (newCap - 1)] = e;
                        else if (e instanceof TreeNode)
                            ((TreeNode<K, V>) e).split(this, newTab, j, oldCap);
                        else { // preserve order
                            Node<K, V> loHead = null, loTail = null;
                            Node<K, V> hiHead = null, hiTail = null;
                            Node<K, V> next;
                            do {
                                next = e.next;
                                if ((e.hash & oldCap) == 0) {
                                    if (loTail == null)
                                        loHead = e;
                                    else
                                        loTail.next = e;
                                    loTail = e;
                                } else {
                                    if (hiTail == null)
                                        hiHead = e;
                                    else
                                        hiTail.next = e;
                                    hiTail = e;
                                }
                            } while ((e = next) != null);
                            if (loTail != null) {
                                loTail.next = null;
                                newTab[j] = loHead;
                            }
                            if (hiTail != null) {
                                hiTail.next = null;
                                newTab[j + oldCap] = hiHead;
                            }
                        }
                    }
                }
            }
            return newTab;
        }
    
        /**
         * Replaces all linked nodes in bin at index for given hash unless
         * table is too small, in which case resizes instead.
         * 将链表转成树结构,如果table还很小,就用resize操作.
         */
        final void treeifyBin(Node<K, V>[] tab, int hash) {
    
            int n, index;
            Node<K, V> e;
            if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
                resize(); // 若table数组为空或其容量小于最小树化值,则用扩容取代树化
            else if ((e = tab[index = (n - 1) & hash]) != null) { // 定位到hash对应的桶位,头结点记为e
                TreeNode<K, V> hd = null;
                TreeNode<K, V> tl = null; // 声明两个指针分别指向链表头尾节点
                do {
                    TreeNode<K, V> p = replacementTreeNode(e, null); // 将Node类型的节点e替换为TreeNode类型的p
                    if (tl == null)
                        hd = p; // 若当前链表为空,则赋值头指针为p
                    else {
                        p.prev = tl; // 否则将p添加到链表尾部
                        tl.next = p;
                    }
                    tl = p; // 后移尾指针
                } while ((e = e.next) != null); // 循环继续
    
                if ((tab[index] = hd) != null) // 将链表头节点放入table的index位置
                    hd.treeify(tab); // 通过treeify方法将链表树化
            }
        }
    
        /**
         * Copies all of the mappings from the specified map to this map.
         * These mappings will replace any mappings that this map had for
         * any of the keys currently in the specified map.
         *
         * @param m
         *            mappings to be stored in this map
         * @throws NullPointerException
         *             if the specified map is null
         */
        public void putAll(Map<? extends K, ? extends V> m) {
    
            putMapEntries(m, true);
        }
    
        /**
         * Removes the mapping for the specified key from this map if present.
         *
         * @param key
         *            key whose mapping is to be removed from the map
         * @return the previous value associated with <tt>key</tt>, or
         *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
         *         (A <tt>null</tt> return can also indicate that the map
         *         previously associated <tt>null</tt> with <tt>key</tt>.)
         */
        public V remove(Object key) {
    
            Node<K, V> e;
            return (e = removeNode(hash(key), key, null, false, true)) == null ? null : e.value;
        }
    
        /**
         * Implements Map.remove and related methods
         * 提供内remove方法使用
         *
         * @param hash
         *            hash for key
         * @param key
         *            the key
         * @param value
         *            the value to match if matchValue, else ignored
         * @param matchValue
         *            if true only remove if value is equal
         * @param movable
         *            if false do not move other nodes while removing
         * @return the node, or null if none
         */
        final Node<K, V> removeNode(int hash, Object key, Object value,
                boolean matchValue, boolean movable) {
    
            Node<K, V>[] tab;
            Node<K, V> p;
            int n, index;
            if ((tab = table) != null && (n = tab.length) > 0 &&
                    (p = tab[index = (n - 1) & hash]) != null) {
                Node<K, V> node = null, e;
                K k;
                V v;
                if (p.hash == hash &&
                        ((k = p.key) == key || (key != null && key.equals(k))))
                    node = p;
                else if ((e = p.next) != null) {
                    // tree情况
                    if (p instanceof TreeNode)
                        node = ((TreeNode<K, V>) p).getTreeNode(hash, key);
                    else {
                        do {
                            if (e.hash == hash &&
                                    ((k = e.key) == key ||
                                            (key != null && key.equals(k)))) {
                                node = e;
                                break;
                            }
                            p = e;
                        } while ((e = e.next) != null);
                    }
                }
                if (node != null && (!matchValue || (v = node.value) == value ||
                        (value != null && value.equals(v)))) {
                    if (node instanceof TreeNode)
                        ((TreeNode<K, V>) node).removeTreeNode(this, tab, movable);
                    else if (node == p)
                        tab[index] = node.next;
                    else
                        p.next = node.next;
                    ++modCount;
                    --size;
                    afterNodeRemoval(node);
                    return node;
                }
            }
            return null;
        }
    
        /**
         * Removes all of the mappings from this map.
         * The map will be empty after this call returns.
         */
        public void clear() {
    
            Node<K, V>[] tab;
            modCount++;
            if ((tab = table) != null && size > 0) {
                size = 0;
                for (int i = 0; i < tab.length; ++i)
                    tab[i] = null;
            }
        }
    
        /**
         * Returns <tt>true</tt> if this map maps one or more keys to the
         * specified value.
         *
         * @param value
         *            value whose presence in this map is to be tested
         * @return <tt>true</tt> if this map maps one or more keys to the
         *         specified value
         */
        public boolean containsValue(Object value) {
    
            Node<K, V>[] tab;
            V v;
            if ((tab = table) != null && size > 0) {
                for (int i = 0; i < tab.length; ++i) {
                    for (Node<K, V> e = tab[i]; e != null; e = e.next) {
                        if ((v = e.value) == value ||
                                (value != null && value.equals(v)))
                            return true;
                    }
                }
            }
            return false;
        }
    
        /**
         * Returns a {@link Set} view of the keys contained in this map.
         * The set is backed by the map, so changes to the map are
         * reflected in the set, and vice-versa. If the map is modified
         * while an iteration over the set is in progress (except through
         * the iterator's own <tt>remove</tt> operation), the results of
         * the iteration are undefined. The set supports element removal,
         * which removes the corresponding mapping from the map, via the
         * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
         * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
         * operations. It does not support the <tt>add</tt> or <tt>addAll</tt>
         * operations.
         *
         * @return a set view of the keys contained in this map
         */
        public Set<K> keySet() {
    
            Set<K> ks;
            return (ks = keySet) == null ? (keySet = new KeySet()) : ks;
        }
    
        final class KeySet extends AbstractSet<K> {
    
            public final int size() {
    
                return size;
            }
    
            public final void clear() {
    
                HashMap.this.clear();
            }
    
            public final Iterator<K> iterator() {
    
                return new KeyIterator();
            }
    
            public final boolean contains(Object o) {
    
                return containsKey(o);
            }
    
            public final boolean remove(Object key) {
    
                return removeNode(hash(key), key, null, false, true) != null;
            }
    
            public final Spliterator<K> spliterator() {
    
                return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);
            }
    
            public final void forEach(Consumer<? super K> action) {
    
                Node<K, V>[] tab;
                if (action == null)
                    throw new NullPointerException();
                if (size > 0 && (tab = table) != null) {
                    int mc = modCount;
                    for (int i = 0; i < tab.length; ++i) {
                        for (Node<K, V> e = tab[i]; e != null; e = e.next)
                            action.accept(e.key);
                    }
                    if (modCount != mc)
                        throw new ConcurrentModificationException();
                }
            }
        }
    
        /**
         * Returns a {@link Collection} view of the values contained in this map.
         * The collection is backed by the map, so changes to the map are
         * reflected in the collection, and vice-versa. If the map is
         * modified while an iteration over the collection is in progress
         * (except through the iterator's own <tt>remove</tt> operation),
         * the results of the iteration are undefined. The collection
         * supports element removal, which removes the corresponding
         * mapping from the map, via the <tt>Iterator.remove</tt>,
         * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
         * <tt>retainAll</tt> and <tt>clear</tt> operations. It does not
         * support the <tt>add</tt> or <tt>addAll</tt> operations.
         *
         * @return a view of the values contained in this map
         */
        public Collection<V> values() {
    
            Collection<V> vs;
            return (vs = values) == null ? (values = new Values()) : vs;
        }
    
        final class Values extends AbstractCollection<V> {
    
            public final int size() {
    
                return size;
            }
    
            public final void clear() {
    
                HashMap.this.clear();
            }
    
            public final Iterator<V> iterator() {
    
                return new ValueIterator();
            }
    
            public final boolean contains(Object o) {
    
                return containsValue(o);
            }
    
            public final Spliterator<V> spliterator() {
    
                return new ValueSpliterator<>(HashMap.this, 0, -1, 0, 0);
            }
    
            public final void forEach(Consumer<? super V> action) {
    
                Node<K, V>[] tab;
                if (action == null)
                    throw new NullPointerException();
                if (size > 0 && (tab = table) != null) {
                    int mc = modCount;
                    for (int i = 0; i < tab.length; ++i) {
                        for (Node<K, V> e = tab[i]; e != null; e = e.next)
                            action.accept(e.value);
                    }
                    if (modCount != mc)
                        throw new ConcurrentModificationException();
                }
            }
        }
    
        /**
         * Returns a {@link Set} view of the mappings contained in this map.
         * The set is backed by the map, so changes to the map are
         * reflected in the set, and vice-versa. If the map is modified
         * while an iteration over the set is in progress (except through
         * the iterator's own <tt>remove</tt> operation, or through the
         * <tt>setValue</tt> operation on a map entry returned by the
         * iterator) the results of the iteration are undefined. The set
         * supports element removal, which removes the corresponding
         * mapping from the map, via the <tt>Iterator.remove</tt>,
         * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
         * <tt>clear</tt> operations. It does not support the
         * <tt>add</tt> or <tt>addAll</tt> operations.
         *
         * @return a set view of the mappings contained in this map
         */
        public Set<Map.Entry<K, V>> entrySet() {
    
            Set<Map.Entry<K, V>> es;
            return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
        }
    
        final class EntrySet extends AbstractSet<Map.Entry<K, V>> {
    
            public final int size() {
    
                return size;
            }
    
            public final void clear() {
    
                HashMap.this.clear();
            }
    
            public final Iterator<Map.Entry<K, V>> iterator() {
    
                return new EntryIterator();
            }
    
            public final boolean contains(Object o) {
    
                if (!(o instanceof Map.Entry))
                    return false;
                Map.Entry<?, ?> e = (Map.Entry<?, ?>) o;
                Object key = e.getKey();
                Node<K, V> candidate = getNode(hash(key), key);
                return candidate != null && candidate.equals(e);
            }
    
            public final boolean remove(Object o) {
    
                if (o instanceof Map.Entry) {
                    Map.Entry<?, ?> e = (Map.Entry<?, ?>) o;
                    Object key = e.getKey();
                    Object value = e.getValue();
                    return removeNode(hash(key), key, value, true, true) != null;
                }
                return false;
            }
    
            public final Spliterator<Map.Entry<K, V>> spliterator() {
    
                return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0);
            }
    
            public final void forEach(Consumer<? super Map.Entry<K, V>> action) {
    
                Node<K, V>[] tab;
                if (action == null)
                    throw new NullPointerException();
                if (size > 0 && (tab = table) != null) {
                    int mc = modCount;
                    for (int i = 0; i < tab.length; ++i) {
                        for (Node<K, V> e = tab[i]; e != null; e = e.next)
                            action.accept(e);
                    }
                    if (modCount != mc)
                        throw new ConcurrentModificationException();
                }
            }
        }
    
        // Overrides of JDK8 Map extension methods
    
        @Override
        public V getOrDefault(Object key, V defaultValue) {
    
            Node<K, V> e;
            return (e = getNode(hash(key), key)) == null ? defaultValue : e.value;
        }
    
        @Override
        public V putIfAbsent(K key, V value) {
    
            return putVal(hash(key), key, value, true, true);
        }
    
        @Override
        public boolean remove(Object key, Object value) {
    
            return removeNode(hash(key), key, value, true, true) != null;
        }
    
        @Override
        public boolean replace(K key, V oldValue, V newValue) {
    
            Node<K, V> e;
            V v;
            if ((e = getNode(hash(key), key)) != null &&
                    ((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) {
                e.value = newValue;
                afterNodeAccess(e);
                return true;
            }
            return false;
        }
    
        @Override
        public V replace(K key, V value) {
    
            Node<K, V> e;
            if ((e = getNode(hash(key), key)) != null) {
                V oldValue = e.value;
                e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
            return null;
        }
    
        @Override
        public V computeIfAbsent(K key,
                Function<? super K, ? extends V> mappingFunction) {
    
            if (mappingFunction == null)
                throw new NullPointerException();
            int hash = hash(key);
            Node<K, V>[] tab;
            Node<K, V> first;
            int n, i;
            int binCount = 0;
            TreeNode<K, V> t = null;
            Node<K, V> old = null;
            if (size > threshold || (tab = table) == null ||
                    (n = tab.length) == 0)
                n = (tab = resize()).length;
            if ((first = tab[i = (n - 1) & hash]) != null) {
                if (first instanceof TreeNode)
                    old = (t = (TreeNode<K, V>) first).getTreeNode(hash, key);
                else {
                    Node<K, V> e = first;
                    K k;
                    do {
                        if (e.hash == hash &&
                                ((k = e.key) == key || (key != null && key.equals(k)))) {
                            old = e;
                            break;
                        }
                        ++binCount;
                    } while ((e = e.next) != null);
                }
                V oldValue;
                if (old != null && (oldValue = old.value) != null) {
                    afterNodeAccess(old);
                    return oldValue;
                }
            }
            V v = mappingFunction.apply(key);
            if (v == null) {
                return null;
            } else if (old != null) {
                old.value = v;
                afterNodeAccess(old);
                return v;
            } else if (t != null)
                t.putTreeVal(this, tab, hash, key, v);
            else {
                tab[i] = newNode(hash, key, v, first);
                if (binCount >= TREEIFY_THRESHOLD - 1)
                    treeifyBin(tab, hash);
            }
            ++modCount;
            ++size;
            afterNodeInsertion(true);
            return v;
        }
    
        public V computeIfPresent(K key,
                BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
    
            if (remappingFunction == null)
                throw new NullPointerException();
            Node<K, V> e;
            V oldValue;
            int hash = hash(key);
            if ((e = getNode(hash, key)) != null &&
                    (oldValue = e.value) != null) {
                V v = remappingFunction.apply(key, oldValue);
                if (v != null) {
                    e.value = v;
                    afterNodeAccess(e);
                    return v;
                } else
                    removeNode(hash, key, null, false, true);
            }
            return null;
        }
    
        @Override
        public V compute(K key,
                BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
    
            if (remappingFunction == null)
                throw new NullPointerException();
            int hash = hash(key);
            Node<K, V>[] tab;
            Node<K, V> first;
            int n, i;
            int binCount = 0;
            TreeNode<K, V> t = null;
            Node<K, V> old = null;
            if (size > threshold || (tab = table) == null ||
                    (n = tab.length) == 0)
                n = (tab = resize()).length;
            if ((first = tab[i = (n - 1) & hash]) != null) {
                if (first instanceof TreeNode)
                    old = (t = (TreeNode<K, V>) first).getTreeNode(hash, key);
                else {
                    Node<K, V> e = first;
                    K k;
                    do {
                        if (e.hash == hash &&
                                ((k = e.key) == key || (key != null && key.equals(k)))) {
                            old = e;
                            break;
                        }
                        ++binCount;
                    } while ((e = e.next) != null);
                }
            }
            V oldValue = (old == null) ? null : old.value;
            V v = remappingFunction.apply(key, oldValue);
            if (old != null) {
                if (v != null) {
                    old.value = v;
                    afterNodeAccess(old);
                } else
                    removeNode(hash, key, null, false, true);
            } else if (v != null) {
                if (t != null)
                    t.putTreeVal(this, tab, hash, key, v);
                else {
                    tab[i] = newNode(hash, key, v, first);
                    if (binCount >= TREEIFY_THRESHOLD - 1)
                        treeifyBin(tab, hash);
                }
                ++modCount;
                ++size;
                afterNodeInsertion(true);
            }
            return v;
        }
    
        @Override
        public V merge(K key, V value,
                BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
    
            if (value == null)
                throw new NullPointerException();
            if (remappingFunction == null)
                throw new NullPointerException();
            int hash = hash(key);
            Node<K, V>[] tab;
            Node<K, V> first;
            int n, i;
            int binCount = 0;
            TreeNode<K, V> t = null;
            Node<K, V> old = null;
            if (size > threshold || (tab = table) == null ||
                    (n = tab.length) == 0)
                n = (tab = resize()).length;
            if ((first = tab[i = (n - 1) & hash]) != null) {
                if (first instanceof TreeNode)
                    old = (t = (TreeNode<K, V>) first).getTreeNode(hash, key);
                else {
                    Node<K, V> e = first;
                    K k;
                    do {
                        if (e.hash == hash &&
                                ((k = e.key) == key || (key != null && key.equals(k)))) {
                            old = e;
                            break;
                        }
                        ++binCount;
                    } while ((e = e.next) != null);
                }
            }
            if (old != null) {
                V v;
                if (old.value != null)
                    v = remappingFunction.apply(old.value, value);
                else
                    v = value;
                if (v != null) {
                    old.value = v;
                    afterNodeAccess(old);
                } else
                    removeNode(hash, key, null, false, true);
                return v;
            }
            if (value != null) {
                if (t != null)
                    t.putTreeVal(this, tab, hash, key, value);
                else {
                    tab[i] = newNode(hash, key, value, first);
                    if (binCount >= TREEIFY_THRESHOLD - 1)
                        treeifyBin(tab, hash);
                }
                ++modCount;
                ++size;
                afterNodeInsertion(true);
            }
            return value;
        }
    
        @Override
        public void forEach(BiConsumer<? super K, ? super V> action) {
    
            Node<K, V>[] tab;
            if (action == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (int i = 0; i < tab.length; ++i) {
                    for (Node<K, V> e = tab[i]; e != null; e = e.next)
                        action.accept(e.key, e.value);
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    
        @Override
        public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
    
            Node<K, V>[] tab;
            if (function == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (int i = 0; i < tab.length; ++i) {
                    for (Node<K, V> e = tab[i]; e != null; e = e.next) {
                        e.value = function.apply(e.key, e.value);
                    }
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    
        /* ------------------------------------------------------------ */
        // Cloning and serialization
    
        /**
         * Returns a shallow copy of this <tt>HashMap</tt> instance: the keys and
         * values themselves are not cloned.
         *
         * @return a shallow copy of this map
         */
        @SuppressWarnings("unchecked")
        @Override
        public Object clone() {
    
            HashMap<K, V> result;
            try {
                result = (HashMap<K, V>) super.clone();
            } catch (CloneNotSupportedException e) {
                // this shouldn't happen, since we are Cloneable
                throw new InternalError(e);
            }
            result.reinitialize();
            result.putMapEntries(this, false);
            return result;
        }
    
        // These methods are also used when serializing HashSets
        final float loadFactor() {
    
            return loadFactor;
        }
    
        final int capacity() {
    
            return (table != null) ? table.length : (threshold > 0) ? threshold : DEFAULT_INITIAL_CAPACITY;
        }
    
        /**
         * Save the state of the <tt>HashMap</tt> instance to a stream (i.e.,
         * serialize it).
         *
         * @serialData The <i>capacity</i> of the HashMap (the length of the
         *             bucket array) is emitted (int), followed by the
         *             <i>size</i> (an int, the number of key-value
         *             mappings), followed by the key (Object) and value (Object)
         *             for each key-value mapping. The key-value mappings are
         *             emitted in no particular order.
         */
        private void writeObject(java.io.ObjectOutputStream s)
                throws IOException {
    
            int buckets = capacity();
            // Write out the threshold, loadfactor, and any hidden stuff
            s.defaultWriteObject();
            s.writeInt(buckets);// table长度
            s.writeInt(size);// 只需要写入全部元素,部需要记录table上无元素的情况
            internalWriteEntries(s);// 写入元素
        }
    
        /**
         * Reconstitute the {@code HashMap} instance from a stream (i.e.,
         * deserialize it).
         * 反序列化使用,在反序列化时系统会调用到这个方法.依次读出writeObject写入的内容
         */
        private void readObject(java.io.ObjectInputStream s)
                throws IOException, ClassNotFoundException {
    
            // Read in the threshold (ignored), loadfactor, and any hidden stuff
            s.defaultReadObject();
            reinitialize();
            if (loadFactor <= 0 || Float.isNaN(loadFactor))
                throw new InvalidObjectException("Illegal load factor: " +
                        loadFactor);
            s.readInt(); // Read and ignore number of buckets
            int mappings = s.readInt(); // Read number of mappings (size)
            if (mappings < 0)
                throw new InvalidObjectException("Illegal mappings count: " +
                        mappings);
            else if (mappings > 0) { // (if zero, use defaults)
                // Size the table using given load factor only if within
                // range of 0.25...4.0
                float lf = Math.min(Math.max(0.25f, loadFactor), 4.0f);
                float fc = (float) mappings / lf + 1.0f;
                int cap = ((fc < DEFAULT_INITIAL_CAPACITY) ? DEFAULT_INITIAL_CAPACITY : (fc >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : tableSizeFor((int) fc));
                float ft = (float) cap * lf;
                threshold = ((cap < MAXIMUM_CAPACITY && ft < MAXIMUM_CAPACITY) ? (int) ft : Integer.MAX_VALUE);
                @SuppressWarnings({ "rawtypes", "unchecked" })
                Node<K, V>[] tab = (Node<K, V>[]) new Node[cap];
                table = tab;
    
                // Read the keys and values, and put the mappings in the HashMap
                for (int i = 0; i < mappings; i++) {
                    @SuppressWarnings("unchecked")
                    K key = (K) s.readObject();
                    @SuppressWarnings("unchecked")
                    V value = (V) s.readObject();
                    putVal(hash(key), key, value, false, false);
                }
            }
        }
    
        /* ------------------------------------------------------------ */
        // iterators
    
        abstract class HashIterator {
    
            Node<K, V> next; // next entry to return
            Node<K, V> current; // current entry
            int expectedModCount; // for fast-fail
            int index; // current slot
    
            HashIterator() {
    
                expectedModCount = modCount;
                Node<K, V>[] t = table;
                current = next = null;
                index = 0;
                if (t != null && size > 0) { // advance to first entry
                    do {
                    } while (index < t.length && (next = t[index++]) == null);
                }
            }
    
            public final boolean hasNext() {
    
                return next != null;
            }
    
            final Node<K, V> nextNode() {
    
                Node<K, V>[] t;
                Node<K, V> e = next;
                if (modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                if (e == null)
                    throw new NoSuchElementException();
                if ((next = (current = e).next) == null && (t = table) != null) {
                    do {
                    } while (index < t.length && (next = t[index++]) == null);
                }
                return e;
            }
    
            public final void remove() {
    
                Node<K, V> p = current;
                if (p == null)
                    throw new IllegalStateException();
                if (modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                current = null;
                K key = p.key;
                removeNode(hash(key), key, null, false, false);
                expectedModCount = modCount;
            }
        }
    
        final class KeyIterator extends HashIterator
                implements Iterator<K> {
    
            public final K next() {
    
                return nextNode().key;
            }
        }
    
        final class ValueIterator extends HashIterator
                implements Iterator<V> {
    
            public final V next() {
    
                return nextNode().value;
            }
        }
    
        final class EntryIterator extends HashIterator
                implements Iterator<Map.Entry<K, V>> {
    
            public final Map.Entry<K, V> next() {
    
                return nextNode();
            }
        }
    
        /* ------------------------------------------------------------ */
        // spliterators
    
        static class HashMapSpliterator<K, V> {
    
            final HashMap<K, V> map;
            Node<K, V> current; // current node
            int index; // current index, modified on advance/split
            int fence; // one past last index
            int est; // size estimate
            int expectedModCount; // for comodification checks
    
            HashMapSpliterator(HashMap<K, V> m, int origin,
                    int fence, int est,
                    int expectedModCount) {
    
                this.map = m;
                this.index = origin;
                this.fence = fence;
                this.est = est;
                this.expectedModCount = expectedModCount;
            }
    
            final int getFence() { // initialize fence and size on first use
    
                int hi;
                if ((hi = fence) < 0) {
                    HashMap<K, V> m = map;
                    est = m.size;
                    expectedModCount = m.modCount;
                    Node<K, V>[] tab = m.table;
                    hi = fence = (tab == null) ? 0 : tab.length;
                }
                return hi;
            }
    
            public final long estimateSize() {
    
                getFence(); // force init
                return (long) est;
            }
        }
    
        static final class KeySpliterator<K, V>
                extends HashMapSpliterator<K, V>
                implements Spliterator<K> {
    
            KeySpliterator(HashMap<K, V> m, int origin, int fence, int est,
                    int expectedModCount) {
    
                super(m, origin, fence, est, expectedModCount);
            }
    
            public KeySpliterator<K, V> trySplit() {
    
                int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
                return (lo >= mid || current != null) ? null
                        : new KeySpliterator<>(map, lo, index = mid, est >>>= 1,
                                expectedModCount);
            }
    
            public void forEachRemaining(Consumer<? super K> action) {
    
                int i, hi, mc;
                if (action == null)
                    throw new NullPointerException();
                HashMap<K, V> m = map;
                Node<K, V>[] tab = m.table;
                if ((hi = fence) < 0) {
                    mc = expectedModCount = m.modCount;
                    hi = fence = (tab == null) ? 0 : tab.length;
                } else
                    mc = expectedModCount;
                if (tab != null && tab.length >= hi &&
                        (i = index) >= 0 && (i < (index = hi) || current != null)) {
                    Node<K, V> p = current;
                    current = null;
                    do {
                        if (p == null)
                            p = tab[i++];
                        else {
                            action.accept(p.key);
                            p = p.next;
                        }
                    } while (p != null || i < hi);
                    if (m.modCount != mc)
                        throw new ConcurrentModificationException();
                }
            }
    
            public boolean tryAdvance(Consumer<? super K> action) {
    
                int hi;
                if (action == null)
                    throw new NullPointerException();
                Node<K, V>[] tab = map.table;
                if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
                    while (current != null || index < hi) {
                        if (current == null)
                            current = tab[index++];
                        else {
                            K k = current.key;
                            current = current.next;
                            action.accept(k);
                            if (map.modCount != expectedModCount)
                                throw new ConcurrentModificationException();
                            return true;
                        }
                    }
                }
                return false;
            }
    
            public int characteristics() {
    
                return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
                        Spliterator.DISTINCT;
            }
        }
    
        static final class ValueSpliterator<K, V>
                extends HashMapSpliterator<K, V>
                implements Spliterator<V> {
    
            ValueSpliterator(HashMap<K, V> m, int origin, int fence, int est,
                    int expectedModCount) {
    
                super(m, origin, fence, est, expectedModCount);
            }
    
            public ValueSpliterator<K, V> trySplit() {
    
                int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
                return (lo >= mid || current != null) ? null
                        : new ValueSpliterator<>(map, lo, index = mid, est >>>= 1,
                                expectedModCount);
            }
    
            public void forEachRemaining(Consumer<? super V> action) {
    
                int i, hi, mc;
                if (action == null)
                    throw new NullPointerException();
                HashMap<K, V> m = map;
                Node<K, V>[] tab = m.table;
                if ((hi = fence) < 0) {
                    mc = expectedModCount = m.modCount;
                    hi = fence = (tab == null) ? 0 : tab.length;
                } else
                    mc = expectedModCount;
                if (tab != null && tab.length >= hi &&
                        (i = index) >= 0 && (i < (index = hi) || current != null)) {
                    Node<K, V> p = current;
                    current = null;
                    do {
                        if (p == null)
                            p = tab[i++];
                        else {
                            action.accept(p.value);
                            p = p.next;
                        }
                    } while (p != null || i < hi);
                    if (m.modCount != mc)
                        throw new ConcurrentModificationException();
                }
            }
    
            public boolean tryAdvance(Consumer<? super V> action) {
    
                int hi;
                if (action == null)
                    throw new NullPointerException();
                Node<K, V>[] tab = map.table;
                if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
                    while (current != null || index < hi) {
                        if (current == null)
                            current = tab[index++];
                        else {
                            V v = current.value;
                            current = current.next;
                            action.accept(v);
                            if (map.modCount != expectedModCount)
                                throw new ConcurrentModificationException();
                            return true;
                        }
                    }
                }
                return false;
            }
    
            public int characteristics() {
    
                return (fence < 0 || est == map.size ? Spliterator.SIZED : 0);
            }
        }
    
        static final class EntrySpliterator<K, V>
                extends HashMapSpliterator<K, V>
                implements Spliterator<Map.Entry<K, V>> {
    
            EntrySpliterator(HashMap<K, V> m, int origin, int fence, int est,
                    int expectedModCount) {
    
                super(m, origin, fence, est, expectedModCount);
            }
    
            public EntrySpliterator<K, V> trySplit() {
    
                int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
                return (lo >= mid || current != null) ? null
                        : new EntrySpliterator<>(map, lo, index = mid, est >>>= 1,
                                expectedModCount);
            }
    
            public void forEachRemaining(Consumer<? super Map.Entry<K, V>> action) {
    
                int i, hi, mc;
                if (action == null)
                    throw new NullPointerException();
                HashMap<K, V> m = map;
                Node<K, V>[] tab = m.table;
                if ((hi = fence) < 0) {
                    mc = expectedModCount = m.modCount;
                    hi = fence = (tab == null) ? 0 : tab.length;
                } else
                    mc = expectedModCount;
                if (tab != null && tab.length >= hi &&
                        (i = index) >= 0 && (i < (index = hi) || current != null)) {
                    Node<K, V> p = current;
                    current = null;
                    do {
                        if (p == null)
                            p = tab[i++];
                        else {
                            action.accept(p);
                            p = p.next;
                        }
                    } while (p != null || i < hi);
                    if (m.modCount != mc)
                        throw new ConcurrentModificationException();
                }
            }
    
            public boolean tryAdvance(Consumer<? super Map.Entry<K, V>> action) {
    
                int hi;
                if (action == null)
                    throw new NullPointerException();
                Node<K, V>[] tab = map.table;
                if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
                    while (current != null || index < hi) {
                        if (current == null)
                            current = tab[index++];
                        else {
                            Node<K, V> e = current;
                            current = current.next;
                            action.accept(e);
                            if (map.modCount != expectedModCount)
                                throw new ConcurrentModificationException();
                            return true;
                        }
                    }
                }
                return false;
            }
    
            public int characteristics() {
    
                return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
                        Spliterator.DISTINCT;
            }
        }
    
        /* ------------------------------------------------------------ */
        // LinkedHashMap support
    
        /*
         * The following package-protected methods are designed to be
         * overridden by LinkedHashMap, but not by any other subclass.
         * Nearly all other internal methods are also package-protected
         * but are declared final, so can be used by LinkedHashMap, view
         * classes, and HashSet.
         */
    
        // Create a regular (non-tree) node
        Node<K, V> newNode(int hash, K key, V value, Node<K, V> next) {
    
            return new Node<>(hash, key, value, next);
        }
    
        // For conversion from TreeNodes to plain nodes
        Node<K, V> replacementNode(Node<K, V> p, Node<K, V> next) {
    
            return new Node<>(p.hash, p.key, p.value, next);
        }
    
        // Create a tree bin node
        TreeNode<K, V> newTreeNode(int hash, K key, V value, Node<K, V> next) {
    
            return new TreeNode<>(hash, key, value, next);
        }
    
        // For treeifyBin
        TreeNode<K, V> replacementTreeNode(Node<K, V> p, Node<K, V> next) {
    
            return new TreeNode<>(p.hash, p.key, p.value, next);
        }
    
        /**
         * Reset to initial default state. Called by clone and readObject.
         */
        void reinitialize() {
    
            table = null;
            entrySet = null;
            keySet = null;
            values = null;
            modCount = 0;
            threshold = 0;
            size = 0;
        }
    
        // Callbacks to allow LinkedHashMap post-actions
        void afterNodeAccess(Node<K, V> p) {
    
        }
    
        void afterNodeInsertion(boolean evict) {
    
        }
    
        void afterNodeRemoval(Node<K, V> p) {
    
        }
    
        // Called only from writeObject, to ensure compatible ordering.
        // 全部元素
        void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {
    
            Node<K, V>[] tab;
            if (size > 0 && (tab = table) != null) {
                for (int i = 0; i < tab.length; ++i) {
                    for (Node<K, V> e = tab[i]; e != null; e = e.next) {
                        s.writeObject(e.key);
                        s.writeObject(e.value);
                    }
                }
            }
        }
    
        /* ------------------------------------------------------------ */
        // Tree bins
    
        /**
         * Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn
         * extends Node) so can be used as extension of either regular or
         * linked node.
         * 树结构节点,继承LinkedHashMap.Entry
         */
        static final class TreeNode<K, V> extends LinkedHashMap.Entry<K, V> {
    
            // 父,左右子,颜色
            TreeNode<K, V> parent; // red-black tree links
            TreeNode<K, V> left;
            TreeNode<K, V> right;
            TreeNode<K, V> prev; // needed to unlink next upon deletion
            boolean red;
    
            TreeNode(int hash, K key, V val, Node<K, V> next) {
    
                super(hash, key, val, next);
            }
    
            /**
             * Returns root of tree containing this node.
             */
            final TreeNode<K, V> root() {
    
                for (TreeNode<K, V> r = this, p;;) {
                    if ((p = r.parent) == null)
                        return r;
                    r = p;
                }
            }
    
            /**
             * Ensures that the given root is the first node of its bin.
             */
            static <K, V> void moveRootToFront(Node<K, V>[] tab, TreeNode<K, V> root) {
    
                int n;
                if (root != null && tab != null && (n = tab.length) > 0) {
                    int index = (n - 1) & root.hash;
                    TreeNode<K, V> first = (TreeNode<K, V>) tab[index];
                    if (root != first) {
                        Node<K, V> rn;
                        tab[index] = root;
                        TreeNode<K, V> rp = root.prev;
                        if ((rn = root.next) != null)
                            ((TreeNode<K, V>) rn).prev = rp;
                        if (rp != null)
                            rp.next = rn;
                        if (first != null)
                            first.prev = root;
                        root.next = first;
                        root.prev = null;
                    }
                    assert checkInvariants(root);
                }
            }
    
            /**
             * Finds the node starting at root p with the given hash and key.
             * The kc argument caches comparableClassFor(key) upon first use
             * comparing keys.
             */
            final TreeNode<K, V> find(int h, Object k, Class<?> kc) {
    
                TreeNode<K, V> p = this;
                do {
                    int ph, dir;
                    K pk;
                    TreeNode<K, V> pl = p.left, pr = p.right, q;
                    if ((ph = p.hash) > h)
                        p = pl;
                    else if (ph < h)
                        p = pr;
                    else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                        return p;
                    else if (pl == null)
                        p = pr;
                    else if (pr == null)
                        p = pl;
                    else if ((kc != null ||
                            (kc = comparableClassFor(k)) != null) &&
                            (dir = compareComparables(kc, k, pk)) != 0)
                        p = (dir < 0) ? pl : pr;
                    else if ((q = pr.find(h, k, kc)) != null)
                        return q;
                    else
                        p = pl;
                } while (p != null);
                return null;
            }
    
            /**
             * Calls find for root node.
             * 查找树中元素 -> 从root开始
             */
            final TreeNode<K, V> getTreeNode(int h, Object k) {
    
                // root的parent==null
                return ((parent != null) ? root() : this).find(h, k, null);
            }
    
            /**
             * Tie-breaking utility for ordering insertions when equal
             * hashCodes and non-comparable. We don't require a total
             * order, just a consistent insertion rule to maintain
             * equivalence across rebalancings. Tie-breaking further than
             * necessary simplifies testing a bit.
             * 两节点hashcode相同无法排序时,用System.identityHashCode再进行依次比较
             * identityHashCode 使用内存地址进行hashCode
             */
            static int tieBreakOrder(Object a, Object b) {
    
                int d;
                if (a == null || b == null ||
                        (d = a.getClass().getName().compareTo(b.getClass().getName())) == 0)
                    d = (System.identityHashCode(a) <= System.identityHashCode(b) ? -1 : 1);
                return d;
            }
    
            /**
             * Forms tree of the nodes linked from this node.
             * 
             * @return root of tree
             *         真正转变操作
             */
            // 这是TreeNode类的实例方法,以调用节点this为根节点,将链表树化
            final void treeify(Node<K, V>[] tab) {
    
                TreeNode<K, V> root = null; // 声明root变量以记录根节点
                for (TreeNode<K, V> x = this, next; x != null; x = next) { // 从调用节点this开始遍历
                    next = (TreeNode<K, V>) x.next; // 暂存链表中的下一个节点,记为next
                    x.left = x.right = null; // 当前节点x的左右子树置空
                    if (root == null) {
                        x.parent = null; // 若root仍为空,则将x节点作为根节点
                        x.red = false; // 红黑树特性之一:根节点为黑色
                        root = x; // 赋值root
                    } else { // 否则的话需将当前节点x插入到已有的树中
                        K k = x.key;
                        int h = x.hash;
                        Class<?> kc = null;
                        // 第二层循环,从根节点开始寻找适合x插入的位置,并完成插入操作。
                        // putTreeVal方法的实现跟这里十分相似。
                        for (TreeNode<K, V> p = root;;) {
                            int dir, ph;
                            K pk = p.key;
                            if ((ph = p.hash) > h) // 若x的hash值小于节点p的,则往p的左子树中继续寻找
                                dir = -1;
                            else if (ph < h) // 反之在右子树中继续
                                dir = 1;
                            // 若两节点hash值相等,且key不可比,则利用System.identityHashCode方法来决定一个方向
                            else if ((kc == null && (kc = comparableClassFor(k)) == null) ||
                                    (dir = compareComparables(kc, k, pk)) == 0)
                                dir = tieBreakOrder(k, pk);
    
                            TreeNode<K, V> xp = p; // 将当前节点p暂存为xp
                            // 根据上面算出的dir值将p向下移向其左子树或右子树,若为空,则说明找到了合适的插入位置,否则继续循环
                            if ((p = (dir <= 0) ? p.left : p.right) == null) {
                                // 执行到这里说明找到了合适x的插入位置
                                x.parent = xp; // 将x的parent指针指向xp
                                if (dir <= 0) // 根据dir决定x是作为xp的左孩子还是右孩子
                                    xp.left = x;
                                else
                                    xp.right = x;
                                // 由于需要维持红黑树的平衡,即始终满足其5条性质,每一次插入新节点后都需要做平衡操作
                                // 这个方法的源码我们在<<红黑树(Red-Black Tree)解析>>一文中已有详细分析,此处不再重复
                                root = balanceInsertion(root, x);
                                break; // 插入完成,跳出循环
                            }
                        }
                    }
                }
                // 由于插入后的平衡调整可能会更换整棵树的根节点,
                // 这里需要通过moveRootToFront方法确保table[index]中的节点与插入前相同
                moveRootToFront(tab, root);
            }
    
            /**
             * Returns a list of non-TreeNodes replacing those linked from
             * this node.
             */
            final Node<K, V> untreeify(HashMap<K, V> map) {
    
                Node<K, V> hd = null, tl = null;
                for (Node<K, V> q = this; q != null; q = q.next) {
                    Node<K, V> p = map.replacementNode(q, null);
                    if (tl == null)
                        hd = p;
                    else
                        tl.next = p;
                    tl = p;
                }
                return hd;
            }
    
            /**
             * Tree version of putVal.
             */
            final TreeNode<K, V> putTreeVal(HashMap<K, V> map, Node<K, V>[] tab,
                    int h, K k, V v) {
    
                Class<?> kc = null;
                boolean searched = false;
                TreeNode<K, V> root = (parent != null) ? root() : this;
                for (TreeNode<K, V> p = root;;) {
                    int dir, ph;
                    K pk;
                    if ((ph = p.hash) > h)
                        dir = -1;
                    else if (ph < h)
                        dir = 1;
                    else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                        return p;
                    else if ((kc == null &&
                            (kc = comparableClassFor(k)) == null) ||
                            (dir = compareComparables(kc, k, pk)) == 0) {
                        if (!searched) {
                            TreeNode<K, V> q, ch;
                            searched = true;
                            if (((ch = p.left) != null &&
                                    (q = ch.find(h, k, kc)) != null) ||
                                    ((ch = p.right) != null &&
                                            (q = ch.find(h, k, kc)) != null))
                                return q;
                        }
                        dir = tieBreakOrder(k, pk);
                    }
    
                    TreeNode<K, V> xp = p;
                    if ((p = (dir <= 0) ? p.left : p.right) == null) {
                        Node<K, V> xpn = xp.next;
                        TreeNode<K, V> x = map.newTreeNode(h, k, v, xpn);
                        if (dir <= 0)
                            xp.left = x;
                        else
                            xp.right = x;
                        xp.next = x;
                        x.parent = x.prev = xp;
                        if (xpn != null)
                            ((TreeNode<K, V>) xpn).prev = x;
                        moveRootToFront(tab, balanceInsertion(root, x));
                        return null;
                    }
                }
            }
    
            /**
             * Removes the given node, that must be present before this call.
             * This is messier than typical red-black deletion code because we
             * cannot swap the contents of an interior node with a leaf
             * successor that is pinned by "next" pointers that are accessible
             * independently during traversal. So instead we swap the tree
             * linkages. If the current tree appears to have too few nodes,
             * the bin is converted back to a plain bin. (The test triggers
             * somewhere between 2 and 6 nodes, depending on tree structure).
             */
            final void removeTreeNode(HashMap<K, V> map, Node<K, V>[] tab,
                    boolean movable) {
    
                int n;
                if (tab == null || (n = tab.length) == 0)
                    return;
                int index = (n - 1) & hash;
                TreeNode<K, V> first = (TreeNode<K, V>) tab[index], root = first, rl;
                TreeNode<K, V> succ = (TreeNode<K, V>) next, pred = prev;
                if (pred == null)
                    tab[index] = first = succ;
                else
                    pred.next = succ;
                if (succ != null)
                    succ.prev = pred;
                if (first == null)
                    return;
                if (root.parent != null)
                    root = root.root();
                if (root == null || root.right == null ||
                        (rl = root.left) == null || rl.left == null) {
                    tab[index] = first.untreeify(map); // too small
                    return;
                }
                TreeNode<K, V> p = this, pl = left, pr = right, replacement;
                if (pl != null && pr != null) {
                    TreeNode<K, V> s = pr, sl;
                    while ((sl = s.left) != null) // find successor
                        s = sl;
                    boolean c = s.red;
                    s.red = p.red;
                    p.red = c; // swap colors
                    TreeNode<K, V> sr = s.right;
                    TreeNode<K, V> pp = p.parent;
                    if (s == pr) { // p was s's direct parent
                        p.parent = s;
                        s.right = p;
                    } else {
                        TreeNode<K, V> sp = s.parent;
                        if ((p.parent = sp) != null) {
                            if (s == sp.left)
                                sp.left = p;
                            else
                                sp.right = p;
                        }
                        if ((s.right = pr) != null)
                            pr.parent = s;
                    }
                    p.left = null;
                    if ((p.right = sr) != null)
                        sr.parent = p;
                    if ((s.left = pl) != null)
                        pl.parent = s;
                    if ((s.parent = pp) == null)
                        root = s;
                    else if (p == pp.left)
                        pp.left = s;
                    else
                        pp.right = s;
                    if (sr != null)
                        replacement = sr;
                    else
                        replacement = p;
                } else if (pl != null)
                    replacement = pl;
                else if (pr != null)
                    replacement = pr;
                else
                    replacement = p;
                if (replacement != p) {
                    TreeNode<K, V> pp = replacement.parent = p.parent;
                    if (pp == null)
                        root = replacement;
                    else if (p == pp.left)
                        pp.left = replacement;
                    else
                        pp.right = replacement;
                    p.left = p.right = p.parent = null;
                }
    
                TreeNode<K, V> r = p.red ? root : balanceDeletion(root, replacement);
    
                if (replacement == p) { // detach
                    TreeNode<K, V> pp = p.parent;
                    p.parent = null;
                    if (pp != null) {
                        if (p == pp.left)
                            pp.left = null;
                        else if (p == pp.right)
                            pp.right = null;
                    }
                }
                if (movable)
                    moveRootToFront(tab, r);
            }
    
            /**
             * Splits nodes in a tree bin into lower and upper tree bins,
             * or untreeifies if now too small. Called only from resize;
             * see above discussion about split bits and indices.
             * 修剪或转成链表
             *
             * @param map
             *            the map
             * @param tab
             *            the table for recording bin heads
             * @param index
             *            the index of the table being split
             * @param bit
             *            the bit of hash to split on
             */
            final void split(HashMap<K, V> map, Node<K, V>[] tab, int index, int bit) {
    
                TreeNode<K, V> b = this;
                // Relink into lo and hi lists, preserving order
                TreeNode<K, V> loHead = null, loTail = null;
                TreeNode<K, V> hiHead = null, hiTail = null;
                int lc = 0, hc = 0;
                for (TreeNode<K, V> e = b, next; e != null; e = next) {
                    next = (TreeNode<K, V>) e.next;
                    e.next = null;
                    if ((e.hash & bit) == 0) {
                        if ((e.prev = loTail) == null)
                            loHead = e;
                        else
                            loTail.next = e;
                        loTail = e;
                        ++lc;
                    } else {
                        if ((e.prev = hiTail) == null)
                            hiHead = e;
                        else
                            hiTail.next = e;
                        hiTail = e;
                        ++hc;
                    }
                }
    
                if (loHead != null) {
                    if (lc <= UNTREEIFY_THRESHOLD)
                        tab[index] = loHead.untreeify(map);
                    else {
                        tab[index] = loHead;
                        if (hiHead != null) // (else is already treeified)
                            loHead.treeify(tab);
                    }
                }
                if (hiHead != null) {
                    if (hc <= UNTREEIFY_THRESHOLD)
                        tab[index + bit] = hiHead.untreeify(map);
                    else {
                        tab[index + bit] = hiHead;
                        if (loHead != null)
                            hiHead.treeify(tab);
                    }
                }
            }
    
            /* ------------------------------------------------------------ */
            // Red-black tree methods, all adapted from CLR
    
            // 旋转
            static <K, V> TreeNode<K, V> rotateLeft(TreeNode<K, V> root,
                    TreeNode<K, V> p) {
    
                TreeNode<K, V> r, pp, rl;
                if (p != null && (r = p.right) != null) {
                    if ((rl = p.right = r.left) != null)
                        rl.parent = p;
                    if ((pp = r.parent = p.parent) == null)
                        (root = r).red = false;
                    else if (pp.left == p)
                        pp.left = r;
                    else
                        pp.right = r;
                    r.left = p;
                    p.parent = r;
                }
                return root;
            }
    
            static <K, V> TreeNode<K, V> rotateRight(TreeNode<K, V> root,
                    TreeNode<K, V> p) {
    
                TreeNode<K, V> l, pp, lr;
                if (p != null && (l = p.left) != null) {
                    if ((lr = p.left = l.right) != null)
                        lr.parent = p;
                    if ((pp = l.parent = p.parent) == null)
                        (root = l).red = false;
                    else if (pp.right == p)
                        pp.right = l;
                    else
                        pp.left = l;
                    l.right = p;
                    p.parent = l;
                }
                return root;
            }
    
            static <K, V> TreeNode<K, V> balanceInsertion(TreeNode<K, V> root,
                    TreeNode<K, V> x) {
    
                x.red = true;
                for (TreeNode<K, V> xp, xpp, xppl, xppr;;) {
                    if ((xp = x.parent) == null) {
                        x.red = false;
                        return x;
                    } else if (!xp.red || (xpp = xp.parent) == null)
                        return root;
                    if (xp == (xppl = xpp.left)) {
                        if ((xppr = xpp.right) != null && xppr.red) {
                            xppr.red = false;
                            xp.red = false;
                            xpp.red = true;
                            x = xpp;
                        } else {
                            if (x == xp.right) {
                                root = rotateLeft(root, x = xp);
                                xpp = (xp = x.parent) == null ? null : xp.parent;
                            }
                            if (xp != null) {
                                xp.red = false;
                                if (xpp != null) {
                                    xpp.red = true;
                                    root = rotateRight(root, xpp);
                                }
                            }
                        }
                    } else {
                        if (xppl != null && xppl.red) {
                            xppl.red = false;
                            xp.red = false;
                            xpp.red = true;
                            x = xpp;
                        } else {
                            if (x == xp.left) {
                                root = rotateRight(root, x = xp);
                                xpp = (xp = x.parent) == null ? null : xp.parent;
                            }
                            if (xp != null) {
                                xp.red = false;
                                if (xpp != null) {
                                    xpp.red = true;
                                    root = rotateLeft(root, xpp);
                                }
                            }
                        }
                    }
                }
            }
    
            static <K, V> TreeNode<K, V> balanceDeletion(TreeNode<K, V> root,
                    TreeNode<K, V> x) {
    
                for (TreeNode<K, V> xp, xpl, xpr;;) {
                    if (x == null || x == root)
                        return root;
                    else if ((xp = x.parent) == null) {
                        x.red = false;
                        return x;
                    } else if (x.red) {
                        x.red = false;
                        return root;
                    } else if ((xpl = xp.left) == x) {
                        if ((xpr = xp.right) != null && xpr.red) {
                            xpr.red = false;
                            xp.red = true;
                            root = rotateLeft(root, xp);
                            xpr = (xp = x.parent) == null ? null : xp.right;
                        }
                        if (xpr == null)
                            x = xp;
                        else {
                            TreeNode<K, V> sl = xpr.left, sr = xpr.right;
                            if ((sr == null || !sr.red) &&
                                    (sl == null || !sl.red)) {
                                xpr.red = true;
                                x = xp;
                            } else {
                                if (sr == null || !sr.red) {
                                    if (sl != null)
                                        sl.red = false;
                                    xpr.red = true;
                                    root = rotateRight(root, xpr);
                                    xpr = (xp = x.parent) == null ? null : xp.right;
                                }
                                if (xpr != null) {
                                    xpr.red = (xp == null) ? false : xp.red;
                                    if ((sr = xpr.right) != null)
                                        sr.red = false;
                                }
                                if (xp != null) {
                                    xp.red = false;
                                    root = rotateLeft(root, xp);
                                }
                                x = root;
                            }
                        }
                    } else { // symmetric
                        if (xpl != null && xpl.red) {
                            xpl.red = false;
                            xp.red = true;
                            root = rotateRight(root, xp);
                            xpl = (xp = x.parent) == null ? null : xp.left;
                        }
                        if (xpl == null)
                            x = xp;
                        else {
                            TreeNode<K, V> sl = xpl.left, sr = xpl.right;
                            if ((sl == null || !sl.red) &&
                                    (sr == null || !sr.red)) {
                                xpl.red = true;
                                x = xp;
                            } else {
                                if (sl == null || !sl.red) {
                                    if (sr != null)
                                        sr.red = false;
                                    xpl.red = true;
                                    root = rotateLeft(root, xpl);
                                    xpl = (xp = x.parent) == null ? null : xp.left;
                                }
                                if (xpl != null) {
                                    xpl.red = (xp == null) ? false : xp.red;
                                    if ((sl = xpl.left) != null)
                                        sl.red = false;
                                }
                                if (xp != null) {
                                    xp.red = false;
                                    root = rotateRight(root, xp);
                                }
                                x = root;
                            }
                        }
                    }
                }
            }
    
            /**
             * Recursive invariant check
             */
            static <K, V> boolean checkInvariants(TreeNode<K, V> t) {
    
                TreeNode<K, V> tp = t.parent, tl = t.left, tr = t.right,
                        tb = t.prev, tn = (TreeNode<K, V>) t.next;
                if (tb != null && tb.next != t)
                    return false;
                if (tn != null && tn.prev != t)
                    return false;
                if (tp != null && t != tp.left && t != tp.right)
                    return false;
                if (tl != null && (tl.parent != t || tl.hash > t.hash))
                    return false;
                if (tr != null && (tr.parent != t || tr.hash < t.hash))
                    return false;
                if (t.red && tl != null && tl.red && tr != null && tr.red)
                    return false;
                if (tl != null && !checkInvariants(tl))
                    return false;
                if (tr != null && !checkInvariants(tr))
                    return false;
                return true;
            }
        }
    
    }
    
    

    相关文章

      网友评论

          本文标题:hashMap解读1

          本文链接:https://www.haomeiwen.com/subject/fzmuhhtx.html