本文中介绍了几种常见的利用plotly_express
作图方法的参数
- scatter
- scatter_geo
- line
- line_polar
- area
- bar
- bar_polar
- violin
- histogram
- pie
- choropleth
- density_heatmap
scatter-散点图
In a scatter plot, each row of data_frame
is represented by a symbol mark in 2D space.
px.scatter(data_frame=None, x=None, y=None, color=None, symbol=None, size=None, hover_name=None, hover_data=None, custom_data=None, text=None, facet_row=None, facet_col=None, facet_col_wrap=0, error_x=None, error_x_minus=None, error_y=None, error_y_minus=None, animation_frame=None, animation_group=None, category_orders={}, labels={}, orientation=None, color_discrete_sequence=None, color_discrete_map={}, color_continuous_scale=None, range_color=None, color_continuous_midpoint=None, symbol_sequence=None, symbol_map={}, opacity=None, size_max=None, marginal_x=None, marginal_y=None, trendline=None, trendline_color_override=None, log_x=False, log_y=False, range_x=None, range_y=None, render_mode='auto', title=None, template=None, width=None, height=None)
scatter_geo-基于地图的散点图
In a geographic scatter plot, each row of
data_frame
is represented by a symbol mark on a map.
px.scatter_geo(data_frame=None, lat=None, lon=None, locations=None, locationmode=None, color=None, text=None, hover_name=None, hover_data=None, custom_data=None, size=None, animation_frame=None, animation_group=None, category_orders={}, labels={}, color_discrete_sequence=None, color_discrete_map={}, color_continuous_scale=None, range_color=None, color_continuous_midpoint=None, opacity=None, size_max=None, projection=None, scope=None, center=None, title=None, template=None, width=None, height=None)
line-2维线形图
In a 2D line plot, each row of data_frame
is represented as vertex of a polyline mark in 2D space.
px.line(data_frame=None, x=None, y=None, line_group=None, color=None, line_dash=None, hover_name=None, hover_data=None, custom_data=None, text=None, facet_row=None, facet_col=None, facet_col_wrap=0, error_x=None, error_x_minus=None, error_y=None, error_y_minus=None, animation_frame=None, animation_group=None, category_orders={}, labels={}, orientation=None, color_discrete_sequence=None, color_discrete_map={}, line_dash_sequence=None, line_dash_map={}, log_x=False, log_y=False, range_x=None, range_y=None, line_shape=None, render_mode='auto', title=None, template=None, width=None, height=None)
line_polar-线性极坐标图
In a polar line plot, each row of data_frame is represented as vertex of a polyline mark in polar coordinates.
px.line_polar(data_frame=None, r=None, theta=None, color=None, line_dash=None, hover_name=None, hover_data=None, custom_data=None, line_group=None, text=None, animation_frame=None, animation_group=None, category_orders={}, labels={}, color_discrete_sequence=None, color_discrete_map={}, line_dash_sequence=None, line_dash_map={}, direction='clockwise', start_angle=90, line_close=False, line_shape=None, render_mode='auto', range_r=None, range_theta=None, log_r=False, title=None, template=None, width=None, height=None)
area-面积图
In a stacked area plot, each row of data_frame is represented as vertex of a polyline mark in 2D space. The area between successive polylines is filled.
在堆叠的面积图形中,每行的DF数据代表多边形的最高点。
px.area(data_frame=None, x=None, y=None, line_group=None, color=None, hover_name=None, hover_data=None, custom_data=None, text=None, facet_row=None, facet_col=None, facet_col_wrap=0, animation_frame=None, animation_group=None, category_orders={}, labels={}, color_discrete_sequence=None, color_discrete_map={}, orientation=None, groupnorm=None, log_x=False, log_y=False, range_x=None, range_y=None, line_shape=None, title=None, template=None, width=None, height=None)
bar-柱状图
In a bar plot, each row of data_frame is represented as a rectangular mark.
在柱状图中,每行的DF数据代表一个矩形
px.bar(data_frame=None, x=None, y=None, color=None, facet_row=None, facet_col=None, facet_col_wrap=0, hover_name=None, hover_data=None, custom_data=None, text=None, error_x=None, error_x_minus=None, error_y=None, error_y_minus=None, animation_frame=None, animation_group=None, category_orders={}, labels={}, color_discrete_sequence=None, color_discrete_map={}, color_continuous_scale=None, range_color=None, color_continuous_midpoint=None, opacity=None, orientation=None, barmode='relative', log_x=False, log_y=False, range_x=None, range_y=None, title=None, template=None, width=None, height=None)
bar_polar-柱状极坐标图
In a polar bar plot, each row of data_frame is represented as a wedge(楔形) mark in polar coordinates.
px.bar_polar(data_frame=None, r=None, theta=None, color=None, hover_name=None, hover_data=None, custom_data=None, animation_frame=None, animation_group=None, category_orders={}, labels={}, color_discrete_sequence=None, color_discrete_map={}, color_continuous_scale=None, range_color=None, color_continuous_midpoint=None, barnorm=None, barmode='relative', direction='clockwise', start_angle=90, range_r=None, range_theta=None, log_r=False, title=None, template=None, width=None, height=None)¶
violin-小提琴图
In a violin plot, rows of data_frame are grouped together into a curved(弯曲的) mark to visualize their distribution(分布)
px.violin(data_frame=None, x=None, y=None, color=None, facet_row=None, facet_col=None, facet_col_wrap=0, hover_name=None, hover_data=None, custom_data=None, animation_frame=None, animation_group=None, category_orders={}, labels={}, color_discrete_sequence=None, color_discrete_map={}, orientation=None, violinmode=None, log_x=False, log_y=False, range_x=None, range_y=None, points=None, box=False, title=None, template=None, width=None, height=None)
histogram-矩形图
In a histogram, rows of data_frame are grouped together into a rectangular mark to visualize the 1D distribution of an aggregate function histfunc (e.g. the count or sum) of the value y (or x if orientation is 'h').
px.histogram(data_frame=None, x=None, y=None, color=None, facet_row=None, facet_col=None, facet_col_wrap=0, hover_name=None, hover_data=None, animation_frame=None, animation_group=None, category_orders={}, labels={}, color_discrete_sequence=None, color_discrete_map={}, marginal=None, opacity=None, orientation=None, barmode='relative', barnorm=None, histnorm=None, log_x=False, log_y=False, range_x=None, range_y=None, histfunc=None, cumulative=None, nbins=None, title=None, template=None, width=None, height=None)
pie
In a pie plot, each row of data_frame is represented as a sector of a pie
plotly.express.pie(data_frame=None, names=None, values=None, color=None, color_discrete_sequence=None, color_discrete_map={}, hover_name=None, hover_data=None, custom_data=None, labels={}, title=None, template=None, width=None, height=None, opacity=None, hole=None)
choropleth-等值线图
In a choropleth map, each row of data_frame is represented by a colored region mark on a map.
通常在地图中使用
px.choropleth(data_frame=None, lat=None, lon=None, locations=None, locationmode=None, geojson=None, featureidkey=None, color=None, hover_name=None, hover_data=None, custom_data=None, animation_frame=None, animation_group=None, category_orders={}, labels={}, color_discrete_sequence=None, color_discrete_map={}, color_continuous_scale=None, range_color=None, color_continuous_midpoint=None, projection=None, scope=None, center=None, title=None, template=None, width=None, height=None)
density_heatmap-密度热图
In a density heatmap, rows of data_frame are grouped together into colored rectangular tiles to visualize the 2D distribution of an aggregate function histfunc (e.g. the count or sum) of the value z.
plotly.express.density_heatmap(data_frame=None, x=None, y=None, z=None, facet_row=None, facet_col=None, facet_col_wrap=0, hover_name=None, hover_data=None, animation_frame=None, animation_group=None, category_orders={}, labels={}, orientation=None, color_continuous_scale=None, range_color=None, color_continuous_midpoint=None, marginal_x=None, marginal_y=None, opacity=None, log_x=False, log_y=False, range_x=None, range_y=None, histfunc=None, histnorm=None, nbinsx=None, nbinsy=None, title=None, template=None, width=None, height=None)
参数解释
参数解释以第一个散点图为例:
- data_frame:目标数据,类型为dataframe;
- x :指定列名。列中的值用于笛卡尔坐标中沿 X 轴的定位标记。图表类型为水平柱状图时,这些值用作参数histfunc的入参;
- y :指定列名。列中的值用于笛卡尔坐标中沿 Y 轴的定位标记。图表类型为垂直柱状图时,这些值用作参数histfunc的入参;
- color:指定列名。为列中的不同值,(由px)自动匹配不同的标记颜色;若列为数值数据时,还会自动生成连续色标;
- symbol:指定列名。为列中的不同值,设置不同的标记形状;
- size:指定列名。为列中的不同值,设置不同的标记大小;
- :指定列名。将列中的值,加粗显示在悬停提示内容的正上方;
- hover_data:指定列名组成的列表。所有列的值,显示在悬停提示内容中,位于x/y值的下方。指定的列与x/y重复时仅显示1条数据;
- text:指定列名。列中的值,在图的标记中显示为文本标签,同时也显示在悬停提示内容中;
- facet_row:指定列名。根据列中不同的(N个)值,在垂直方向上显示N个子图,并在子图右侧,垂直方向上,进行文本标注;
- facet_col:指定列名。根据列中不同的(N个)值,在水平方向上显示N个子图,并在子图上方,水平方向上,进行文本标注;
- error_x:指定列名。显示误差线,列中的值用于调整 X 轴误差线的大小。如果参数error_x_minus == None,则悬停提示内容中,显示对称的误差值;否则显示正向的误差值。该列通常是基于元数据加工的结果,目的是统计元数据指标的误差值,一般会用元数据除以100的整数倍。
- error_x_minus:指定列名。列中的值用于在负方向调整 X 轴误差线的大小,如果参数error_x==None,则直接忽略该参数;
- error_y:指定列名。显示误差线,列中的值用于调整 Y 轴误差线的大小。如果参数error_y_minus == None,则悬停提示内容中,显示对称的误差值;否则显示正向的误差值。该列通常是基于元数据加工的结果,目的是统计元数据指标的误差值,一般会用元数据除以100的整数倍。
- error_y_minus:指定列名。列中的值用于在负方向调整 Y 轴误差线的大小,如果参数error_y==None,则直接忽略该参数;
- animation_frame:指定列名。列中的值用于为动画帧指定标记,即设置滑动条;
- animation_group:指定列名。列中的值用于提供跨动画帧的联动匹配;
- category_orders:带有字符串键和字符串列表值的字典,默认为{},此参数用于强制每列的特定值排序,dict键是列名,dict值是指定的排列顺序的字符串列表。默认情况下,在Python 3.6+中,轴,图例和构面中的分类值的顺序取决于在data_frame中首次出现的顺序,而在3.6以下的Python中,默认不保证顺序,该参数即为解决此类问题而设计;
- labels:带字符串键和字符串值的dict,默认为{}。此参数用于修改图表中显示的列名称。默认情况下,图表中使用列名称作为轴标题、图例条目、悬停提示等,此参数可以进行修改,dict的键是列名,dict值是修改的新名称;
- color_discrete_sequence:有效的CSS颜色字符串列表,取自plotly_express的color子模块。当参数color指定的列不是数值数据时,该参数为color列指定颜色序列,若category_orders参数不为None,则按category_orders中设定的顺序循环执行color_discrete_sequence,除非color列的值在参数color_discrete_map入参的dict键中;
- color_discrete_map:带字符串键和有效CSS颜色字符串值的dict,默认为{}。当参数color指定的列不是数值数据时,该参数用于将特定颜色分配给,与特定值对应的标记,color_discrete_map中的键为color表示的列值。其优先级高,会覆盖color_discrete_sequence参数中的设置;
- color_continuous_scale:有效的CSS颜色字符串列表,取自plotly_express的color子模块。当参数color指定的列是数值数据时,为连续色标,设置指定的颜色序列。实际上,color指定列时,px会自动匹配颜色:1)若指定列是数值数据,通过参数color_continuous_scale可以设定具体的颜色序列;2)若指定列是非数值数据时,通过参数color_discrete_sequence可以设定具体的颜色序列(循环匹配);通过参数color_discrete_map可以为列中不同值,指定具体的颜色;
- range_color:2个数字元素组成的列表,参数用于设定连续色标上的自动缩放,即边界的大小值;
- color_continuous_midpoint:数字,默认为无。如果设置,则计算连续色标的边界以具有所需的中点。 若使用plotly_express.colors.diverging色标作为color_continuous_scale的如参时,建议设置此值;
- symbol_sequence:定义plotly.js符号的字符串列表。参数用于为列中的值分配符号,除非symbol的值是symbol_map中的键。分配符号的顺序:按按category_orders中设置的顺序循环执行;
- symbol_map:带字符串键和定义plotly.js符号的字符串值的dict,默认值{}。该参数用于将特定符号分配给,与特定值对应的标记,symbol_map中的键为symbol表示的列值。其优先级高,会覆盖symbol_sequence参数中的设置;
- opacity:数字,介于0和1之间,设置标记的不透明度;
- size_max:整数,默认为20。使用size参数时,设置最大标记的大小;
- marginal_x:字符串,取值:rug(细条)、box(箱图)、violin(小提琴图)、histogram(直方图)。该参数用于在主图上方,绘制一个水平子图,以便对x分布,进行可视化;
- marginal_y:字符串,取值:rug(细条)、box(箱图)、violin(小提琴图)、histogram(直方图)。该参数用于在主图右侧,绘制一个垂直子图,以便对y分布,进行可视化;
- trendline:字符串,取值:ols、lowess、None。取值为ols时,将为每个离散颜色/符号组,绘制一个普通最小二乘回归线;取值为lowess时,则将为每个离散颜色/符号组,绘制局部加权散点图平滑线;
- trendline_color_override:字符串,有效的CSS颜色。如果设置了参数trendline趋势线,则将以此颜色绘制所有趋势线;
- log_x:布尔值,默认为False。如果为True,则 X 轴在笛卡尔坐标系中进行对数缩放;
- log_y:布尔值,默认为False。如果为True,则 Y 轴在笛卡尔坐标系中进行对数缩放;
- range_x:2个数字元素组成的列表,用于设定笛卡尔坐标中 X 轴上的自动缩放,即边界的大小值;
- range_y:2个数字元素组成的列表,用于设定笛卡尔坐标中 Y 轴上的自动缩放,即边界的大小值;
- render_mode:字符串,取值:auto(默认)、svg、webgl。用于控制绘制标记的浏览器API,svg适用于少于1000的数据,并允许完全矢量化输出;webgl可以接收1000点以上的数据;auto使用启发式方法来选择模式;
- title:字符串,设置图表的标题;
- template:字符串或Plotly.py模板对象,设置图表的背景颜色。有三个内置的 Plotly 主题: plotly, plotly_white 和 plotly_dark;
- width:整数,默认无,设置图表的宽度(以像素为单位);
- height:整数,默认600,设置图表的高度(以像素为单位);
其他作图方法的作图参数类似
网友评论