美文网首页
plotly-express-4-常见绘图参数

plotly-express-4-常见绘图参数

作者: 皮皮大 | 来源:发表于2020-07-08 08:53 被阅读0次

本文中介绍了几种常见的利用plotly_express作图方法的参数

  • scatter
  • scatter_geo
  • line
  • line_polar
  • area
  • bar
  • bar_polar
  • violin
  • histogram
  • pie
  • choropleth
  • density_heatmap
image

scatter-散点图

In a scatter plot, each row of data_frame is represented by a symbol mark in 2D space.

px.scatter(data_frame=None, x=None, y=None, color=None, symbol=None, size=None, hover_name=None, hover_data=None, custom_data=None, text=None, facet_row=None, facet_col=None, facet_col_wrap=0, error_x=None, error_x_minus=None, error_y=None, error_y_minus=None, animation_frame=None, animation_group=None, category_orders={}, labels={}, orientation=None, color_discrete_sequence=None, color_discrete_map={}, color_continuous_scale=None, range_color=None, color_continuous_midpoint=None, symbol_sequence=None, symbol_map={}, opacity=None, size_max=None, marginal_x=None, marginal_y=None, trendline=None, trendline_color_override=None, log_x=False, log_y=False, range_x=None, range_y=None, render_mode='auto', title=None, template=None, width=None, height=None)

scatter_geo-基于地图的散点图

In a geographic scatter plot, each row of data_frame is represented by a symbol mark on a map.

px.scatter_geo(data_frame=None, lat=None, lon=None, locations=None, locationmode=None, color=None, text=None, hover_name=None, hover_data=None, custom_data=None, size=None, animation_frame=None, animation_group=None, category_orders={}, labels={}, color_discrete_sequence=None, color_discrete_map={}, color_continuous_scale=None, range_color=None, color_continuous_midpoint=None, opacity=None, size_max=None, projection=None, scope=None, center=None, title=None, template=None, width=None, height=None)

line-2维线形图

In a 2D line plot, each row of data_frame is represented as vertex of a polyline mark in 2D space.

px.line(data_frame=None, x=None, y=None, line_group=None, color=None, line_dash=None, hover_name=None, hover_data=None, custom_data=None, text=None, facet_row=None, facet_col=None, facet_col_wrap=0, error_x=None, error_x_minus=None, error_y=None, error_y_minus=None, animation_frame=None, animation_group=None, category_orders={}, labels={}, orientation=None, color_discrete_sequence=None, color_discrete_map={}, line_dash_sequence=None, line_dash_map={}, log_x=False, log_y=False, range_x=None, range_y=None, line_shape=None, render_mode='auto', title=None, template=None, width=None, height=None)

line_polar-线性极坐标图

In a polar line plot, each row of data_frame is represented as vertex of a polyline mark in polar coordinates.

px.line_polar(data_frame=None, r=None, theta=None, color=None, line_dash=None, hover_name=None, hover_data=None, custom_data=None, line_group=None, text=None, animation_frame=None, animation_group=None, category_orders={}, labels={}, color_discrete_sequence=None, color_discrete_map={}, line_dash_sequence=None, line_dash_map={}, direction='clockwise', start_angle=90, line_close=False, line_shape=None, render_mode='auto', range_r=None, range_theta=None, log_r=False, title=None, template=None, width=None, height=None)

area-面积图

In a stacked area plot, each row of data_frame is represented as vertex of a polyline mark in 2D space. The area between successive polylines is filled.

在堆叠的面积图形中,每行的DF数据代表多边形的最高点。

px.area(data_frame=None, x=None, y=None, line_group=None, color=None, hover_name=None, hover_data=None, custom_data=None, text=None, facet_row=None, facet_col=None, facet_col_wrap=0, animation_frame=None, animation_group=None, category_orders={}, labels={}, color_discrete_sequence=None, color_discrete_map={}, orientation=None, groupnorm=None, log_x=False, log_y=False, range_x=None, range_y=None, line_shape=None, title=None, template=None, width=None, height=None)

bar-柱状图

In a bar plot, each row of data_frame is represented as a rectangular mark.

在柱状图中,每行的DF数据代表一个矩形

px.bar(data_frame=None, x=None, y=None, color=None, facet_row=None, facet_col=None, facet_col_wrap=0, hover_name=None, hover_data=None, custom_data=None, text=None, error_x=None, error_x_minus=None, error_y=None, error_y_minus=None, animation_frame=None, animation_group=None, category_orders={}, labels={}, color_discrete_sequence=None, color_discrete_map={}, color_continuous_scale=None, range_color=None, color_continuous_midpoint=None, opacity=None, orientation=None, barmode='relative', log_x=False, log_y=False, range_x=None, range_y=None, title=None, template=None, width=None, height=None)

bar_polar-柱状极坐标图

In a polar bar plot, each row of data_frame is represented as a wedge(楔形) mark in polar coordinates.

px.bar_polar(data_frame=None, r=None, theta=None, color=None, hover_name=None, hover_data=None, custom_data=None, animation_frame=None, animation_group=None, category_orders={}, labels={}, color_discrete_sequence=None, color_discrete_map={}, color_continuous_scale=None, range_color=None, color_continuous_midpoint=None, barnorm=None, barmode='relative', direction='clockwise', start_angle=90, range_r=None, range_theta=None, log_r=False, title=None, template=None, width=None, height=None)¶

violin-小提琴图

In a violin plot, rows of data_frame are grouped together into a curved(弯曲的) mark to visualize their distribution(分布)

px.violin(data_frame=None, x=None, y=None, color=None, facet_row=None, facet_col=None, facet_col_wrap=0, hover_name=None, hover_data=None, custom_data=None, animation_frame=None, animation_group=None, category_orders={}, labels={}, color_discrete_sequence=None, color_discrete_map={}, orientation=None, violinmode=None, log_x=False, log_y=False, range_x=None, range_y=None, points=None, box=False, title=None, template=None, width=None, height=None)

histogram-矩形图

In a histogram, rows of data_frame are grouped together into a rectangular mark to visualize the 1D distribution of an aggregate function histfunc (e.g. the count or sum) of the value y (or x if orientation is 'h').

px.histogram(data_frame=None, x=None, y=None, color=None, facet_row=None, facet_col=None, facet_col_wrap=0, hover_name=None, hover_data=None, animation_frame=None, animation_group=None, category_orders={}, labels={}, color_discrete_sequence=None, color_discrete_map={}, marginal=None, opacity=None, orientation=None, barmode='relative', barnorm=None, histnorm=None, log_x=False, log_y=False, range_x=None, range_y=None, histfunc=None, cumulative=None, nbins=None, title=None, template=None, width=None, height=None)

pie

In a pie plot, each row of data_frame is represented as a sector of a pie

plotly.express.pie(data_frame=None, names=None, values=None, color=None, color_discrete_sequence=None, color_discrete_map={}, hover_name=None, hover_data=None, custom_data=None, labels={}, title=None, template=None, width=None, height=None, opacity=None, hole=None)

choropleth-等值线图

In a choropleth map, each row of data_frame is represented by a colored region mark on a map.

通常在地图中使用

px.choropleth(data_frame=None, lat=None, lon=None, locations=None, locationmode=None, geojson=None, featureidkey=None, color=None, hover_name=None, hover_data=None, custom_data=None, animation_frame=None, animation_group=None, category_orders={}, labels={}, color_discrete_sequence=None, color_discrete_map={}, color_continuous_scale=None, range_color=None, color_continuous_midpoint=None, projection=None, scope=None, center=None, title=None, template=None, width=None, height=None)

density_heatmap-密度热图

In a density heatmap, rows of data_frame are grouped together into colored rectangular tiles to visualize the 2D distribution of an aggregate function histfunc (e.g. the count or sum) of the value z.

plotly.express.density_heatmap(data_frame=None, x=None, y=None, z=None, facet_row=None, facet_col=None, facet_col_wrap=0, hover_name=None, hover_data=None, animation_frame=None, animation_group=None, category_orders={}, labels={}, orientation=None, color_continuous_scale=None, range_color=None, color_continuous_midpoint=None, marginal_x=None, marginal_y=None, opacity=None, log_x=False, log_y=False, range_x=None, range_y=None, histfunc=None, histnorm=None, nbinsx=None, nbinsy=None, title=None, template=None, width=None, height=None)

参数解释

参数解释以第一个散点图为例:

  • data_frame:目标数据,类型为dataframe;
  • x :指定列名。列中的值用于笛卡尔坐标中沿 X 轴的定位标记。图表类型为水平柱状图时,这些值用作参数histfunc的入参;
  • y :指定列名。列中的值用于笛卡尔坐标中沿 Y 轴的定位标记。图表类型为垂直柱状图时,这些值用作参数histfunc的入参;
  • color:指定列名。为列中的不同值,(由px)自动匹配不同的标记颜色;若列为数值数据时,还会自动生成连续色标
  • symbol:指定列名。为列中的不同值,设置不同的标记形状;
  • size:指定列名。为列中的不同值,设置不同的标记大小;
  • \color{red}{hover_name}:指定列名。将列中的值,加粗显示在悬停提示内容的正上方;
  • hover_data:指定列名组成的列表。所有列的值,显示在悬停提示内容中,位于x/y值的下方。指定的列与x/y重复时仅显示1条数据;
  • text:指定列名。列中的值,在图的标记中显示为文本标签,同时也显示在悬停提示内容中;
  • facet_row:指定列名。根据列中不同的(N个)值,在垂直方向上显示N个子图,并在子图右侧,垂直方向上,进行文本标注;
  • facet_col:指定列名。根据列中不同的(N个)值,在水平方向上显示N个子图,并在子图上方,水平方向上,进行文本标注;
  • error_x:指定列名。显示误差线,列中的值用于调整 X 轴误差线的大小。如果参数error_x_minus == None,则悬停提示内容中,显示对称的误差值;否则显示正向的误差值。该列通常是基于元数据加工的结果,目的是统计元数据指标的误差值,一般会用元数据除以100的整数倍。
  • error_x_minus:指定列名。列中的值用于在负方向调整 X 轴误差线的大小,如果参数error_x==None,则直接忽略该参数;
  • error_y:指定列名。显示误差线,列中的值用于调整 Y 轴误差线的大小。如果参数error_y_minus == None,则悬停提示内容中,显示对称的误差值;否则显示正向的误差值。该列通常是基于元数据加工的结果,目的是统计元数据指标的误差值,一般会用元数据除以100的整数倍。
  • error_y_minus:指定列名。列中的值用于在负方向调整 Y 轴误差线的大小,如果参数error_y==None,则直接忽略该参数;
  • animation_frame:指定列名。列中的值用于为动画帧指定标记,即设置滑动条;
  • animation_group:指定列名。列中的值用于提供跨动画帧的联动匹配;
  • category_orders:带有字符串键和字符串列表值的字典,默认为{},此参数用于强制每列的特定值排序,dict键是列名,dict值是指定的排列顺序的字符串列表。默认情况下,在Python 3.6+中,轴,图例和构面中的分类值的顺序取决于在data_frame中首次出现的顺序,而在3.6以下的Python中,默认不保证顺序,该参数即为解决此类问题而设计;
  • labels:带字符串键和字符串值的dict,默认为{}。此参数用于修改图表中显示的列名称。默认情况下,图表中使用列名称作为轴标题、图例条目、悬停提示等,此参数可以进行修改,dict的键是列名,dict值是修改的新名称;
  • color_discrete_sequence:有效的CSS颜色字符串列表,取自plotly_express的color子模块。当参数color指定的列不是数值数据时,该参数为color列指定颜色序列,若category_orders参数不为None,则按category_orders中设定的顺序循环执行color_discrete_sequence,除非color列的值在参数color_discrete_map入参的dict键中;
  • color_discrete_map:带字符串键和有效CSS颜色字符串值的dict,默认为{}。当参数color指定的列不是数值数据时,该参数用于将特定颜色分配给,与特定值对应的标记,color_discrete_map中的键为color表示的列值。其优先级高,会覆盖color_discrete_sequence参数中的设置;
  • color_continuous_scale:有效的CSS颜色字符串列表,取自plotly_express的color子模块。当参数color指定的列是数值数据时,为连续色标,设置指定的颜色序列。实际上,color指定列时,px会自动匹配颜色:1)若指定列是数值数据,通过参数color_continuous_scale可以设定具体的颜色序列;2)若指定列是非数值数据时,通过参数color_discrete_sequence可以设定具体的颜色序列(循环匹配);通过参数color_discrete_map可以为列中不同值,指定具体的颜色;
  • range_color:2个数字元素组成的列表,参数用于设定连续色标上的自动缩放,即边界的大小值;
  • color_continuous_midpoint:数字,默认为无。如果设置,则计算连续色标的边界以具有所需的中点。 若使用plotly_express.colors.diverging色标作为color_continuous_scale的如参时,建议设置此值;
  • symbol_sequence:定义plotly.js符号的字符串列表。参数用于为列中的值分配符号,除非symbol的值是symbol_map中的键。分配符号的顺序:按按category_orders中设置的顺序循环执行;
  • symbol_map:带字符串键和定义plotly.js符号的字符串值的dict,默认值{}。该参数用于将特定符号分配给,与特定值对应的标记,symbol_map中的键为symbol表示的列值。其优先级高,会覆盖symbol_sequence参数中的设置;
  • opacity:数字,介于0和1之间,设置标记的不透明度;
  • size_max:整数,默认为20。使用size参数时,设置最大标记的大小;
  • marginal_x:字符串,取值:rug(细条)、box(箱图)、violin(小提琴图)、histogram(直方图)。该参数用于在主图上方,绘制一个水平子图,以便对x分布,进行可视化;
  • marginal_y:字符串,取值:rug(细条)、box(箱图)、violin(小提琴图)、histogram(直方图)。该参数用于在主图右侧,绘制一个垂直子图,以便对y分布,进行可视化;
  • trendline:字符串,取值:ols、lowess、None。取值为ols时,将为每个离散颜色/符号组,绘制一个普通最小二乘回归线;取值为lowess时,则将为每个离散颜色/符号组,绘制局部加权散点图平滑线;
  • trendline_color_override:字符串,有效的CSS颜色。如果设置了参数trendline趋势线,则将以此颜色绘制所有趋势线;
  • log_x:布尔值,默认为False。如果为True,则 X 轴在笛卡尔坐标系中进行对数缩放;
  • log_y:布尔值,默认为False。如果为True,则 Y 轴在笛卡尔坐标系中进行对数缩放;
  • range_x:2个数字元素组成的列表,用于设定笛卡尔坐标中 X 轴上的自动缩放,即边界的大小值;
  • range_y:2个数字元素组成的列表,用于设定笛卡尔坐标中 Y 轴上的自动缩放,即边界的大小值;
  • render_mode:字符串,取值:auto(默认)、svg、webgl。用于控制绘制标记的浏览器API,svg适用于少于1000的数据,并允许完全矢量化输出;webgl可以接收1000点以上的数据;auto使用启发式方法来选择模式;
  • title:字符串,设置图表的标题;
  • template:字符串或Plotly.py模板对象,设置图表的背景颜色。有三个内置的 Plotly 主题: plotly, plotly_white 和 plotly_dark;
  • width:整数,默认无,设置图表的宽度(以像素为单位);
  • height:整数,默认600,设置图表的高度(以像素为单位);

其他作图方法的作图参数类似

相关文章

  • plotly-express-4-常见绘图参数

    本文中介绍了几种常见的利用plotly_express作图方法的参数 scatter scatter_geo li...

  • Core Graphics 之 Graphics Context

    Graphics Contexts 图形上下文表示绘图目的地。它包含绘图参数和绘图系统执行任何后续绘图命令所需的所...

  • 五、R 语言作图

    1.绘图函数 (高级函数能绘成一张图,低级函数是添砖加瓦的) (1)绘图参数 (2)手动参数 (3)模板 2.几何...

  • 11-1绘图

    图就是数据,数据就是图 base绘图函数image.png 绘图参数image.png*低级绘图函数需要寄生于高级...

  • pandas绘图参数

    ''' pandas绘图参数 def __call__(self, kind='line', ax=None,...

  • 1-8-1/1-9-1函数介绍及R包

    函数与参数 形式参数与实际参数image 写函数的函数function() {} 补充知识:绘图函数 plot()...

  • Quartz 2D编程指南-03图形上下文

    图形上下文表示绘图目标。它包含绘图参数和绘图系统执行任何后续绘图命令所需的所有特定于设备的信息。图形上下文定义了基...

  • 常见绘图类型

    1.盒须图matplotlib里的示例https://matplotlib.org/gallery/statist...

  • Graphics Contexts

    图形上下文表示绘图目的地。它包含绘图系统执行任何后续绘图命令所需的绘图参数和所有特定于设备的信息。图形上下文定义基...

  • Graphics Context

    一个图形上下文代表一个绘图目标,它包含绘图参数和绘图系统执行任何后续绘图命令所需的所有特定于设备的信息。图形上下文...

网友评论

      本文标题:plotly-express-4-常见绘图参数

      本文链接:https://www.haomeiwen.com/subject/galqcktx.html