美文网首页智能创意坊程序员
机器学习算法优缺点与适用类型(机器学习实战-学习笔记)

机器学习算法优缺点与适用类型(机器学习实战-学习笔记)

作者: 虽不中不远矣 | 来源:发表于2019-04-15 10:03 被阅读4次

一、分类

1、k-临近算法(kNN)

优点:精度高、对异常值不明感、无数据输入假定

缺点:计算复杂度高、空间复杂度高

适用数据范围:数据型和标称型

2、决策树

优点:计算复杂度不高、输出结果易理解、对中间值的缺失不敏感、可处理不相关特征数据

缺点:可能会产生过度匹配问题(需要剪枝)

适用数据范围:数值型和标称型

3、朴素贝叶斯

优点:对数据较少的情况下任然有效,可以处理多类别问题

缺点:对于输入数据的准备方式较为敏感

适用数据范围:标称型数据

4、logistic 回归

优点:计算代价不高,易于理解实现

缺点:容易大拟合,分类精度可能不高

适用数据类型:数值型和标称型

5、支持向量机

优点:泛化错误率低,计算开销不大,结果易于理解

缺点:对参数调节和核函数的选择敏感,原始分类器不加修改仅仅适用于处理二值问题

适用数据类型:数值型和标称型

6、AdaBoost元算法

优点:泛化错误率低,易编码,可应用在大部分分类器上,无参数调整

缺点:对离群点不敏感

适用数据类型:数值型和标称型

二、回归预测数值型数据

1、线性回归

优点:结果易于理解,计算上不复杂

缺点:对非线性的数据拟合不好

适用数据类型:数值型和标称型

2、树回归

优点:可对复杂和非线性数据建模

缺点:结果不易于理解

适用数据类型:数值型和标称型

三、无监督学习(聚类)

1、k-均值聚类算法

优点:容易实现

缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢

适用数据类型:数值型

2、Apriori算法

优点:易编码实现

缺点:在大数据上可能较慢

适用数据类型:数值型和标称型

3、FP-growth算法

优点:一般快于Apriori算法

缺点:实现比较困难,在某些数据集上性能会下降

适用数据类型:标称型

四、其它工具

1、主成分分析(PCA)

优点:降低数据复杂性,识别最重要的多个特征

缺点:不一定需要,可能损失有用信息

适用数据类型:数据型

2、奇异值分解(SVD)

优点:简化数据,去除噪声,提高算法效果

缺点:数据转换可能难以理解

适用数据类型:数据型

3、MapReduce

优点:可在短时间完成大量工作

缺点:算法必须经过重写,需要对系统工程有一定了解

适用数据类型:数值型和标称型

相关文章

  • 机器学习算法优缺点与适用类型(机器学习实战-学习笔记)

    一、分类 1、k-临近算法(kNN) 优点:精度高、对异常值不明感、无数据输入假定 缺点:计算复杂度高、空间复杂度...

  • 机器学习算法的优缺点

    机器学习算法的优缺点 机器学习算法的优缺点 线性回归 Linear Regression 逻辑回归 Logisti...

  • 机器学习实战-knn

    机器学习实战笔记-knn算法实战 本文内容源于《机器学习实战》一书,主要介绍了knn(k-nearest neig...

  • K-Means算法

    参考链接:1. python机器学习实战之K均值聚类2. 机器学习实战之K-Means算法3.《机器学习实战》(十...

  • 机器学习实战中文版 pdf高清+源代码

    机器学习实战中文版 pdf高清+源代码 《机器学习实战》介绍并实现机器学习的主流算法,面向日常任务的高效实战内容,...

  • 主成分分析法(PCA)等降维(dimensionality re

    机器学习算法学习路上的伙伴们,早安、午安、晚安,机器学习一些基础算法的初级知识学的差不多啦,跟着《机器学习算法实战...

  • 机器学习笔记-文本分类(一)概述

    最近在看机器学习的书籍和视频,主要有:统计学习方法 李航西瓜书 周志华python机器学习实战机器学习算法原理与...

  • 机器学习实战

    机器学习实战 [tag]人工智能,机器学习,可视化,数据分析,k近邻,python,监督机器学习算法, [cont...

  • 机器学习笔记

    学习Andrew Ng的机器学习教程,做个笔记。 初识机器学习 人工智能的核心是机器学习,机器学习的本质是算法 机...

  • 机器学习和算法

    机器学习算法 github主页:机器学习和算法 最近以来一直在学习机器学习和算法,然后自己就在不断总结和写笔记,记...

网友评论

    本文标题:机器学习算法优缺点与适用类型(机器学习实战-学习笔记)

    本文链接:https://www.haomeiwen.com/subject/gdlfbqtx.html