作者:jiangzz
电话:15652034180
微信:jiangzz_wx
微信公众账号:jiangzz_wy
Hbase
概述
Hbase是一个基于Hadoop之上的数据库服务,该数据库是一个分布式、可扩展的大的数据仓库。当您需要对大数据进行随机,实时读/写访问时,请使用Apache HBase™(HDFS虽然可以存储海量数据,但是对数据的管理粒度比较粗糙,只支持对文件的上传下载,并不支持对文件内容行记录级别的修改)。Apache HBase是一个开源,分布式,版本化,非关系型数据库,模仿了谷歌的Bigtable,正如Bigtable利用Google文件系统提供的分布式数据存储一样,Apache HBase在Hadoop和HDFS之上提供类似Bigtable的功能。
HBase和HDFS关系&区别?
Hbase是构建在HDFS之上的一个数据库服务,能够使得用户通过HBase数据库服务间接的操作HDFS,能够使得用户对HDFS上的数据实现CRUD操作(细粒度操作)。
Hbase特性-官方
- 线性和模块化扩展。
- 严格一致 reads 和 writes.
- 表的自动和可配置分片(自动分区)
- RegionServers之间的自动故障转移支持。
- 方便的基类,用于使用Apache HBase表支持Hadoop MapReduce作业。
- 易于使用的Java API,用于客户端访问。
- Block cache 和 Bloom Filters 以进行实时查询。
列存储
NoSQL
:泛指非关系型数据通常包含以下类型:key-value型、文档型-JSON、基于列型、图形关系存储。每一种NoSQL产品彼此之间没有任何关系,差异很大基本上彼此之间不能够相互替换。
基于列型使用场景:
hbase支持存储数十亿级别的数据,但是Hbase不支持复杂查询和事物操作。因此Hbase虽然存储海量数据,但是基于海量数据的查询是非常有限的。
列存储和行存储区别?
Hbase安装
- 安装好HDFS,并且保证HDFS正常运行
- 必须配置HADOOP_HOME,因为HBase需要通过该变量定位HADOOP服务
- 安装Zookeeper(存储集群的元数据信息HMaster和HRegionServer)
[root@CentOS ~]# tar -zxf zookeeper-3.4.6.tar.gz -C /usr/
[root@CentOS ~]# mkdir zkdata
[root@CentOS ~]# touch /usr/zookeeper-3.4.6/conf/zoo.cfg
[root@CentOS ~]# vi /usr/zookeeper-3.4.6/conf/zoo.cfg
tickTime=2000
dataDir=/root/zkdata
clientPort=2181
[root@CentOS ~]# /usr/zookeeper-3.4.6/bin/zkServer.sh start zoo.cfg
JMX enabled by default
Using config: /usr/zookeeper-3.4.6/bin/../conf/zoo.cfg
Starting zookeeper ... STARTED
[root@CentOS ~]# /usr/zookeeper-3.4.6/bin/zkServer.sh status zoo.cfg
JMX enabled by default
Using config: /usr/zookeeper-3.4.6/bin/../conf/zoo.cfg
Mode: standalone
- 安装配置hbase
[root@CentOS ~]# tar -zxf hbase-1.2.4-bin.tar.gz -C /usr/
[root@CentOS ~]# vi /usr/hbase-1.2.4/conf/hbase-site.xml
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>hbase.rootdir</name>
<value>hdfs://CentOS:9000/hbase</value>
</property>
<property>
<name>hbase.cluster.distributed</name>
<value>true</value>
</property>
<property>
<name>hbase.zookeeper.quorum</name>
<value>CentOS</value>
</property>
<property>
<name>hbase.zookeeper.property.clientPort</name>
<value>2181</value>
</property>
</configuration>
修改regionservers文本配置文件
[root@CentOS ~]# vi /usr/hbase-1.2.4/conf/regionservers
CentOS
配置.bashrc文件
[root@CentOS ~]# vi .bashrc
HADOOP_CLASSPATH=/root/mysql-connector-java-5.1.46.jar
HADOOP_HOME=/usr/hadoop-2.6.0
JAVA_HOME=/usr/java/latest
PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
CLASSPATH=.
HBASE_MANAGES_ZK=false
export JAVA_HOME
export PATH
export CLASSPATH
export HADOOP_HOME
export HADOOP_CLASSPATH
export HBASE_MANAGES_ZK
[root@CentOS ~]# source .bashrc
启动HBase服务
[root@CentOS ~]# cd /usr/hbase-1.2.4/
[root@CentOS hbase-1.2.4]# ./bin/start-hbase.sh
[root@CentOS hbase-1.2.4]# jps
1667 DataNode
1844 SecondaryNameNode
1429 QuorumPeerMain
2533 Jps
2245 HRegionServer
2118 HMaster
1578 NameNode
在这里插入图片描述地址栏输入:http://ip:16010 查看启动UI 界面
Hbase Shell
- 链接Hbase Shell
[root@CentOS hbase-1.2.4]# ./bin/hbase shell
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/usr/hbase-1.2.4/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/usr/hadoop-2.6.0/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
HBase Shell; enter 'help<RETURN>' for list of supported commands.
Type "exit<RETURN>" to leave the HBase Shell
Version 1.2.4, rUnknown, Wed Feb 15 18:58:00 CST 2017
hbase(main):001:0>
用户可以通过help查看系统脚本命令
hbase(main):001:0> help
常用命令
:
status, table_help, version, whoami
hbase(main):003:0> status
1 active master, 0 backup masters, 1 servers, 0 dead, 2.0000 average load
hbase(main):004:0> whoami
root (auth:SIMPLE)
groups: root
hbase(main):005:0> version
1.2.4, rUnknown, Wed Feb 15 18:58:00 CST 2017
namespace
:命名空间等价传统数据中的database
alter_namespace, create_namespace, describe_namespace, drop_namespace, list_namespace, list_namespace_tables
hbase(main):007:0> create_namespace 'baizhi',{'user'=>'zs'}
0 row(s) in 0.3920 seconds
hbase(main):009:0> alter_namespace 'baizhi', {METHOD => 'set', 'sex' => 'true'}
0 row(s) in 0.1430 seconds
hbase(main):010:0> describe_namespace 'baizhi'
DESCRIPTION
{NAME => 'baizhi', sex => 'true', user => 'zs'}
1 row(s) in 0.0050 seconds
hbase(main):011:0> alter_namespace 'baizhi',{METHOD => 'unset', NAME=>'sex'}
0 row(s) in 0.1140 seconds
hbase(main):013:0> list_namespace
NAMESPACE
baizhi
default
hbase
3 row(s) in 0.1790 seconds
hbase(main):015:0> list_namespace '^b.*'
NAMESPACE
baizhi
1 row(s) in 0.0160 seconds
hbase(main):016:0> list_namespace_tables 'hbase'
TABLE
meta
namespace
2 row(s) in 0.1510 seconds
ddl命名
:data define languge 数据定义命令,涵盖建表、建库命令
alter, alter_async, alter_status, create, describe, disable, disable_all, drop, drop_all, enable, enable_all, exists, get_table, is_disabled, is_enabled, list, locate_region, show_filters
hbase(main):019:0> create 'baizhi:t_user',{NAME=>'cf1',VERSIONS=>3},{NAME=>'cf2',TTL=>300}
0 row(s) in 2.9600 seconds
=> Hbase::Table - baizhi:t_user
hbase(main):024:0> list
TABLE
baizhi:t_user
1 row(s) in 0.0560 seconds
=> ["baizhi:t_user"]
hbase(main):028:0> disable_all 'baizhi:t_u.*'
baizhi:t_user
Disable the above 1 tables (y/n)?
y
1 tables successfully disabled
hbase(main):029:0> drop
drop drop_all drop_namespace
hbase(main):029:0> drop_all 'baizhi:t_u.*'
baizhi:t_user
Drop the above 1 tables (y/n)?
y
1 tables successfully dropped
hbase(main):030:0> list
TABLE
0 row(s) in 0.0070 seconds
=> []
hbase(main):032:0> exists 'baizhi:t_user'
Table baizhi:t_user does not exist
0 row(s) in 0.0210 seconds
dml
data manage language 数据管理语言,通常是一些数据库的CRUD操作
append, count, delete, deleteall, get, get_counter, get_splits, incr, put, scan, truncate, truncate_preserve
hbase(main):001:0> count 'baizhi:t_user'
0 row(s) in 1.8630 seconds
=> 0
hbase(main):002:0> t = get_table 'baizhi:t_user'
0 row(s) in 0.0000 seconds
=> Hbase::Table - baizhi:t_user
hbase(main):003:0> t.count
0 row(s) in 0.1140 seconds
=> 0
put
hbase(main):004:0> put 'baizhi:t_user','001','cf1:name','zhangsan'
0 row(s) in 0.7430 seconds
hbase(main):005:0> put 'baizhi:t_user','001','cf1:age',18
0 row(s) in 0.1120 seconds
# 修改
hbase(main):006:0> put 'baizhi:t_user','001','cf1:age',20
0 row(s) in 0.0720 seconds
get
hbase(main):008:0> get 'baizhi:t_user','001'
COLUMN CELL
cf1:age timestamp=1553961219305, value=20
cf1:name timestamp=1553961181804, value=zhangsan
hbase(main):009:0> get 'baizhi:t_user','001',{COLUMN=>'cf1',VERSIONS=>3}
COLUMN CELL
cf1:age timestamp=1553961219305, value=20
cf1:age timestamp=1553961198084, value=18
cf1:name timestamp=1553961181804, value=zhangsan
3 row(s) in 0.1540 seconds
hbase(main):010:0> get 'baizhi:t_user','001',{COLUMN=>'cf1',TIMESTAMP=>1553961198084}
COLUMN CELL
cf1:age timestamp=1553961198084, value=18
1 row(s) in 0.0900 seconds
hbase(main):015:0> get 'baizhi:t_user','001',{COLUMN=>'cf1',TIMERANGE=>[1553961198084,1553961219306],VERSIONS=>3}
COLUMN CELL
cf1:age timestamp=1553961219305, value=20
cf1:age timestamp=1553961198084, value=18
2 row(s) in 0.0180 seconds
hbase(main):018:0> get 'baizhi:t_user','001',{COLUMN=>'cf1',FILTER => "ValueFilter(=, 'binary:zhangsan')"}
COLUMN CELL
cf1:name timestamp=1553961181804, value=zhangsan
1 row(s) in 0.0550 seconds
hbase(main):019:0> get 'baizhi:t_user','001',{COLUMN=>'cf1',FILTER => "ValueFilter(=, 'substring:zhang')"}
COLUMN CELL
cf1:name timestamp=1553961181804, value=zhangsan
1 row(s) in 0.0780 seconds
delete/deleteall
# 删除指定版本之前的所以cell
hbase(main):027:0> delete 'baizhi:t_user','001','cf1:age',1553961899630
0 row(s) in 0.1020 seconds
# 删除cf1:age的所有单元格
hbase(main):031:0> delete 'baizhi:t_user','001','cf1:age'
0 row(s) in 0.0180 seconds
hbase(main):034:0> deleteall 'baizhi:t_user','001'
0 row(s) in 0.0360 seconds
hbase(main):035:0> t.count
0 row(s) in 0.0450 seconds
=> 0
hbase(main):036:0> get 'baizhi:t_user','001',{COLUMN=>'cf1',VERSIONS=>3}
COLUMN CELL
0 row(s) in 0.0130 seconds
scan
hbase(main):045:0> scan 'baizhi:t_user'
ROW COLUMN+CELL
001 column=cf1:age, timestamp=1553962118964, value=21
001 column=cf1:name, timestamp=1553962147916, value=zs
002 column=cf1:age, timestamp=1553962166894, value=19
002 column=cf1:name, timestamp=1553962157743, value=ls
003 column=cf1:name, timestamp=1553962203754, value=zl
005 column=cf1:age, timestamp=1553962179379, value=19
005 column=cf1:name, timestamp=1553962192054, value=ww
hbase(main):054:0> scan 'baizhi:t_user',{ LIMIT => 2,STARTROW=>"003",REVERSED=>true}
ROW COLUMN+CELL
003 column=cf1:name, timestamp=1553962203754, value=zl
002 column=cf1:age, timestamp=1553962166894, value=19
002 column=cf1:name, timestamp=1553962157743, value=ls
hbase(main):058:0> scan 'baizhi:t_user',{ LIMIT => 2,STARTROW=>"003",REVERSED=>true,VERSIONS=>3,TIMERANGE=>[1553962157743,1553962203790]}
ROW COLUMN+CELL
003 column=cf1:name, timestamp=1553962203754, value=zl
002 column=cf1:age, timestamp=1553962166894, value=19
002 column=cf1:name, timestamp=1553962157743, value=ls
2 row(s) in 0.0810 seconds
truncate- 截断表
hbase(main):072:0> truncate 'baizhi:t_user'
Truncating 'baizhi:t_user' table (it may take a while):
- Disabling table...
Java API操作HBase
maven
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.6.0</version>
</dependency>
<dependency>
<groupId>org.apache.hbase</groupId>
<artifactId>hbase-client</artifactId>
<version>1.2.4</version>
</dependency>
创建和Hbase链接参数
private static Admin admin;//负责执行DDL
private static Connection conn;//负责执行DML
static {
try {
Configuration conf = new Configuration();
conf.set("hbase.zookeeper.quorum","CentOS");
conn= ConnectionFactory.createConnection(conf);
admin=conn.getAdmin();
} catch (IOException e) {
e.printStackTrace();
}
}
public static void close() throws IOException {
admin.close();
conn.close();
}
Namespace操作
//创建
NamespaceDescriptor nd = NamespaceDescriptor.create("zpark")
.addConfiguration("user","zhansgan")
.build();
admin.createNamespace(nd);
//查看
NamespaceDescriptor[] nds = admin.listNamespaceDescriptors();
for (NamespaceDescriptor nd : nds) {
System.out.println(nd.getName());
}
//删除
admin.deleteNamespace("zpark");
Table先关操作(重点)
TableName tname=TableName.valueOf("zpark:t_user");
HTableDescriptor td = new HTableDescriptor(tname);
//构建cf1、cf2
HColumnDescriptor cf1 = new HColumnDescriptor("cf1");
cf1.setMaxVersions(3);
//设置ROW+COL索引方式,比默认ROW占用更多的内存信息
cf1.setBloomFilterType(BloomType.ROWCOL);
HColumnDescriptor cf2 = new HColumnDescriptor("cf2");
//设置失效时常5min
cf2.setTimeToLive(300);
cf2.setInMemory(true);
//设置column family
td.addFamily(cf1);
td.addFamily(cf2);
admin.createTable(td);
数据的DML(重点)
//2.447 秒
TableName tname = TableName.valueOf("zpark:t_user");
Table table = conn.getTable(tname);
//构建PUT指令
for(int i=0;i<1000;i++){
DecimalFormat df = new DecimalFormat("0000");
String rowKey = df.format(i);
Put put=new Put(rowKey.getBytes());
put.addColumn("cf1".getBytes(),"name".getBytes(), Bytes.toBytes("USER"+rowKey));
put.addColumn("cf1".getBytes(),"age".getBytes(), Bytes.toBytes(i+""));
put.addColumn("cf1".getBytes(),"sex".getBytes(), Bytes.toBytes((i%4==0)+""));
put.addColumn("cf1".getBytes(),"salary".getBytes(), Bytes.toBytes(1000+(i/100.0)*100+""));
table.put(put);
}
table.close();
批量插入
TableName tname = TableName.valueOf("zpark:t_user");
BufferedMutator bufferedMutator=conn.getBufferedMutator(tname);
//构建PUT指令 0.549 秒
long begin=System.currentTimeMillis();
for(int i=0;i<1000;i++){
DecimalFormat df = new DecimalFormat("0000");
String rowKey = df.format(i);
Put put=new Put(rowKey.getBytes());
put.addColumn("cf1".getBytes(),"name".getBytes(), Bytes.toBytes("USER"+rowKey));
put.addColumn("cf1".getBytes(),"age".getBytes(), Bytes.toBytes(i+""));
put.addColumn("cf1".getBytes(),"sex".getBytes(), Bytes.toBytes((i%4==0)+""));
put.addColumn("cf1".getBytes(),"salary".getBytes(), Bytes.toBytes(1000+(i/100.0)*100+""));
bufferedMutator.mutate(put);
if(i%500==0){
bufferedMutator.flush();
}
}
long end=System.currentTimeMillis();
bufferedMutator.close();
System.out.println(((end-begin)/1000.0)+" 秒");
GET
TableName tname = TableName.valueOf("zpark:t_user");
Table table = conn.getTable(tname);
Get get=new Get("0010".getBytes());
Result result = table.get(get);
while (result.advance()){
Cell cell = result.current();
String row = Bytes.toString(CellUtil.cloneRow(cell));
String cf = Bytes.toString(CellUtil.cloneFamily(cell));
String col = Bytes.toString(CellUtil.cloneQualifier(cell));
String v = Bytes.toString(CellUtil.cloneValue(cell));
long ts=cell.getTimestamp();
System.out.println(row+"=>"+cf+":"+col+"\t"+v+" ts:"+ts);
}
table.close();
TableName tname = TableName.valueOf("zpark:t_user");
Table table = conn.getTable(tname);
Get get=new Get("0010".getBytes());
Result result = table.get(get);
String row=Bytes.toString(result.getRow());
String name = Bytes.toString(result.getValue("cf1".getBytes(), "name".getBytes()));
String age = Bytes.toString(result.getValue("cf1".getBytes(), "age".getBytes()));
String sex = Bytes.toString(result.getValue("cf1".getBytes(), "sex".getBytes()));
String salary = Bytes.toString(result.getValue("cf1".getBytes(), "salary".getBytes()));
System.out.println(row+"\t"+name+" "+age+" "+sex+" "+salary);
table.close();
Scan
TableName tname = TableName.valueOf("zpark:t_user");
Table table = conn.getTable(tname);
Scan scan = new Scan();
scan.setStartRow("0000".getBytes());
scan.setStopRow("0200".getBytes());
scan.addFamily("cf1".getBytes());
Filter filter1=new RowFilter(CompareFilter.CompareOp.EQUAL,new RegexStringComparator("09$"));
Filter filter2=new RowFilter(CompareFilter.CompareOp.EQUAL,new SubstringComparator("80"));
FilterList filter=new FilterList(FilterList.Operator.MUST_PASS_ONE,filter1,filter2);
scan.setFilter(filter);
ResultScanner rs = table.getScanner(scan);
for (Result result : rs) {
String row=Bytes.toString(result.getRow());
String name = Bytes.toString(result.getValue("cf1".getBytes(), "name".getBytes()));
String age = Bytes.toString(result.getValue("cf1".getBytes(), "age".getBytes()));
String sex = Bytes.toString(result.getValue("cf1".getBytes(), "sex".getBytes()));
String salary = Bytes.toString(result.getValue("cf1".getBytes(), "salary".getBytes()));
System.out.println(row+"\t"+name+" "+age+" "+sex+" "+salary);
}
table.close();
MapReduce 集成 Hbase(重点)
Jar包依赖
Hbase
0.90.x
版本以后,程序可以自主解决运行时依赖,底层通过conf.set("tmpjars",'....'),所以用户无需使用-libjars参数,但是用户需要解决系统的提交依赖,因为系统如果读取HBase上的数据在任务初期需要计算任务切片,此时需要配置HADOOP_CLASSPATH
[root@CentOS ~]# vi .bashrc
HADOOP_HOME=/usr/hadoop-2.6.0
JAVA_HOME=/usr/java/latest
PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
CLASSPATH=.
HBASE_MANAGES_ZK=false
export JAVA_HOME
export PATH
export CLASSPATH
export HADOOP_HOME
export HBASE_MANAGES_ZK
HADOOP_CLASSPATH=/root/mysql-connector-java-5.1.46.jar:`/usr/hbase-1.2.4/bin/hbase classpath`
export HADOOP_CLASSPATH
[root@CentOS ~]# source .bashrc
Maven
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.6.0</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>2.6.0</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-jobclient</artifactId>
<version>2.6.0</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-core</artifactId>
<version>2.6.0</version>
</dependency>
<!--Hbase依赖-->
<dependency>
<groupId>org.apache.hbase</groupId>
<artifactId>hbase-client</artifactId>
<version>1.2.4</version>
</dependency>
<dependency>
<groupId>org.apache.hbase</groupId>
<artifactId>hbase-server</artifactId>
<version>1.2.4</version>
</dependency>
任务提交
public class CustomJobsubmitter extends Configured implements Tool {
public int run(String[] args) throws Exception {
//1.创建Job实例
Configuration conf = getConf();
//开启Map端压缩
conf.setBoolean("mapreduce.map.output.compress",true);
conf.setClass("mapreduce.map.output.compress.codec", GzipCodec.class, CompressionCodec.class);
//设置hbase的链接参数
conf.set("hbase.zookeeper.quorum","CentOS");
Job job=Job.getInstance(conf);
job.setJarByClass(CustomJobsubmitter.class);
//2.设置数据读入和写出格式化
job.setInputFormatClass(TableInputFormat.class);
job.setOutputFormatClass(TableOutputFormat.class);
Scan scan = new Scan();
scan.addFamily("cf1".getBytes());
TableMapReduceUtil.initTableMapperJob(
"zpark:t_user",
scan,
UserMapper.class,
Text.class,
DoubleWritable.class,
job);
TableMapReduceUtil.initTableReducerJob(
"zpark:t_result",
UserReducer.class,
job
);
job.setNumReduceTasks(1);
job.setCombinerClass(UserCombiner.class);
job.waitForCompletion(true);
return 0;
}
public static void main(String[] args) throws Exception {
ToolRunner.run(new CustomJobsubmitter(),args);
}
}
UserMapper
public class UserMapper extends TableMapper<Text, DoubleWritable> {
@Override
protected void map(ImmutableBytesWritable key, Result value, Context context) throws IOException, InterruptedException {
String sex = Bytes.toString(value.getValue("cf1".getBytes(), "sex".getBytes()));
Double salary = Double.parseDouble(Bytes.toString(value.getValue("cf1".getBytes(), "salary".getBytes())));
context.write(new Text(sex),new DoubleWritable(salary));
}
}
UserReduce
public class UserReducer extends TableReducer<Text, DoubleWritable,NullWritable> {
@Override
protected void reduce(Text key, Iterable<DoubleWritable> values, Context context) throws IOException, InterruptedException {
double totalSalary=0.0;
for (DoubleWritable value : values) {
totalSalary+=value.get();
}
Put put =new Put(key.getBytes());
put.addColumn("cf1".getBytes(),"totalSalary".getBytes(), Bytes.toBytes(totalSalary+""));
context.write(null,put);
}
}
UserCombiner
public class UserCombiner extends Reducer<Text, DoubleWritable,Text, DoubleWritable> {
@Override
protected void reduce(Text key, Iterable<DoubleWritable> values, Context context) throws IOException, InterruptedException {
double totalSalary=0.0;
for (DoubleWritable value : values) {
totalSalary+=value.get();
}
context.write(key,new DoubleWritable(totalSalary));
}
}
HBase集群构建
- 保证所有物理主机的时钟同步,否则集群搭建失败
[root@CentOSX ~]# date -s '2019-04-01 16:24:00'
Mon Apr 1 16:24:00 CST 2019
[root@CentOSX ~]# clock -w
- 确保HDFS正常启动(参考HDFS集群构建)
- 搭建HBase集群
[root@CentOSX ~]# tar -zxf hbase-1.2.4-bin.tar.gz -C /usr/
[root@CentOSX ~]# vi /usr/hbase-1.2.4/conf/hbase-site.xml
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>hbase.rootdir</name>
<value>hdfs://mycluster/hbase</value>
</property>
<property>
<name>hbase.cluster.distributed</name>
<value>true</value>
</property>
<property>
<name>hbase.zookeeper.quorum</name>
<value>CentOSA,CentOSB,CentOSC</value>
</property>
<property>
<name>hbase.zookeeper.property.clientPort</name>
<value>2181</value>
</property>
</configuration>
- 修改RegionServers
[root@CentOSX ~]# vi /usr/hbase-1.2.4/conf/regionservers
CentOSA
CentOSB
CentOSC
- 修改环境变量
[root@CentOS ~]# vi .bashrc
HADOOP_HOME=/usr/hadoop-2.6.0
JAVA_HOME=/usr/java/latest
PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
CLASSPATH=.
export JAVA_HOME
export PATH
export CLASSPATH
export HADOOP_HOME
HBASE_MANAGES_ZK=false
HADOOP_CLASSPATH=`/usr/hbase-1.2.4/bin/hbase classpath`
export HBASE_MANAGES_ZK
export HADOOP_CLASSPATH
[root@CentOS ~]# source .bashrc
- 启动Hbase服务
[root@CentOSX hbase-1.2.4]# ./bin/hbase-daemon.sh start master
[root@CentOSX hbase-1.2.4]# ./bin/hbase-daemon.sh start regionserver
网友评论