美文网首页
2019-01-16[Stay Sharp]Bernoulli

2019-01-16[Stay Sharp]Bernoulli

作者: 三千雨点 | 来源:发表于2019-01-16 23:04 被阅读4次

    Bernoulli distribution

    Bernoulli distribution is the discrete probability distribution of a random variable which takes the value 1 with probability u and the value 0 with probability v = 1-u. i.e.
    p ( x = 1 | \mu ) = \mu where 0 \leqslant \mu \leqslant 1, and from that we get v = p(x=0|\mu) = 1-\mu. so the probability distribution over x can be writter in the following form:

    \operatorname { Bern } ( x | \mu ) = \mu ^ { x } ( 1 - \mu ) ^ { 1 - x }
    this is the Bernoulli distribution.

    mean of Bernoulli distribution is \mathbb { E } [ x ] = \mu

    Verification:

    \mathbb {E}[x] = p(x=1|\mu) * 1 + p(x = 0|\mu) * 0 = \mu * 1 + v * 0 = \mu

    variance of Bernoulli distribution is \operatorname { var } [ x ] = \mu ( 1 - \mu )

    Verification:

    \mathbb { E } \left[ x ^ { 2 } \right] = p(x=1|\mu) * 1^{2} + p(x = 0|\mu) * 0^{2} = \mu * 1 + v * 0 = \mu
    \operatorname {var}[x] = \mathbb { E } \left[ x ^ { 2 } \right] - \mathbb { E } [ x ] ^ { 2 } = \mu - \mu^{2} = \mu(1-\mu)

    相关文章

      网友评论

          本文标题:2019-01-16[Stay Sharp]Bernoulli

          本文链接:https://www.haomeiwen.com/subject/ghavdqtx.html