美文网首页
Logistic Regression

Logistic Regression

作者: Kevin不会创作 | 来源:发表于2020-12-11 14:14 被阅读0次

    Table of Contents

    • Overview
      • Logistic function
      • Model
      • Loss function
      • Cost function
      • Gradient descent

    Overview

    Logistic regression is a statistical model that in its basic form uses a logistic function to model a binary dependent variable.

    • Logistic function

      Logistic function is a common example of a sigmoid function.

      S(x)=\frac{1}{1+e^{-x}}=\frac{e^x}{e^x+1}

    • Model

      z=wx+b

      p=sigmoid(z)=\frac{1}{1+e^{-z}}

      \hat{y}=\begin{cases} 1, & p\geq t \\ 0, & p<t \end{cases}

      where t is the threshold.

    • Loss function

      Cross-entropy is used as the loss function in Logistic Regression.

      L(y,\hat{y})=-(y*log(\hat{y})+(1-y)*log(1-\hat{y}))

    • Cost function

      Just sum up L(y,\hat{y}) you can get the cost function.

      J(w,b)=\frac{1}{m}\sum_1^{m}L(y^{(i)},\hat{y}^{(i)})

    • Gradient descent

      You can use gradient descent to find the optimum parameters (w,b)

      1. Initialize w and b

      2. Compute dw and db using chain rule

        d{w}=\frac{\partial{L}}{\partial{w}}=\frac{\partial{L}}{\partial{\hat{y}}}\cdot\frac{\partial{\hat{y}}}{\partial{z}}\cdot\frac{\partial{z}}{\partial{w}}

        \begin{split} \frac{\partial{L}}{\partial{\hat{y}}}&=-\frac{\partial(y*log(\hat{y})+(1-y)*log(1-\hat{y}))}{\partial{\hat{y}}}\\ &=-\frac{y}{\hat{y}}+\frac{1-y}{1-\hat{y}} \end{split}

        \begin{split} \frac{\partial{\hat{y}}}{\partial{z}}=\hat{y}(1-\hat{y}) \end{split}

        \frac{\partial{z}}{\partial{w}}=x

        So we can obtain

        dw=\frac{\partial{L}}{\partial{w}}=(\hat{y}-y)\cdot x

        Similarly,

      db=\frac{\partial{L}}{\partial{b}}=\hat{y}-y

      1. Update w and b

        w=w-\alpha\cdot{dw}

        b=b-\alpha\cdot{db}

        where \alpha is the learning rate.

      2. Repeat step 2&3 until the improvement drops below a threshold or it reaches the maximum number of iterations.

    相关文章

      网友评论

          本文标题:Logistic Regression

          本文链接:https://www.haomeiwen.com/subject/ghlrgktx.html