Minimum Spaning Tree: 在我看来,就是在图G中包含所有点的tree,并且tree中所有边的权加起来最小。
Kruskal's algorithm:用于求出无向连通图中最小生成🌲---Minimum Spaning Tree(当然也可以求最大生成🌲)
或者在图不连通的情况下,求出最小(最大)森林。
过程:
- 设置 每一个点都是一棵树
- 先将所有cut(边)由小到大进行sort
- 尝试所有的边
A. 如果两个端点分别位于两颗树,那么连接两颗树,形成一条边。
B. 如果两个点都在一颗树内,产生了一条环,那么就舍弃。
练习:
有二十个地方,每个地方相互连通,每个连通公路造价各不同,求最小工程造价和具体的施工方案。
import random
class node():
def __init__(self, num):
self.value = num
def build_map(nums):
prices = {}
for j in range(0, nums):
for i in range(0, nums):
if i != j and j < i:
weight = 10 * random.random()
name = (i, j)
prices[name] = weight
return prices
def quick_sort(array_price, connection_list, low, high):
if low < high:
middle = find_pivot(array_price, connection_list, low, high)
quick_sort(array_price, connection_list, middle + 1, high)
quick_sort(array_price, connection_list, low, middle - 1)
def find_pivot(array_prices, connection_list, low, high):
pivot = high
leftwall = low
for i in range(low, high):
if array_prices[pivot] > array_prices[i]:
array_prices[leftwall], array_prices[i] = array_prices[i], array_prices[leftwall]
connection_list[leftwall], connection_list[i] = connection_list[i], connection_list[leftwall]
leftwall += 1
array_prices[high], array_prices[leftwall] = array_prices[leftwall], array_prices[high]
connection_list[high], connection_list[leftwall] = connection_list[leftwall], connection_list[high]
return leftwall
def kruskal(prices, nums):
nodes = []
total_prices = 0
add_order = []
# create the node
for j in range(0, nums):
nodes.append(node(j))
prices_list = list(prices.values())
connection_list = list(prices.keys())
# sort
quick_sort(prices_list, connection_list, 0, len(prices_list)-1)
for i in range(0, len(prices_list)):
node_1 = connection_list[i][0]
node_2 = connection_list[i][1]
if nodes[node_1].value != nodes[node_2].value:
if node_1 > node_2:
value = nodes[node_1].value
nodes[node_1].value = nodes[node_2].value
# refresh represent of those nodes
for j in range(0, nums):
if nodes[j].value == value:
nodes[j].value = nodes[node_2].value
else:
value = nodes[node_2].value
nodes[node_2].value = nodes[node_1].value
# refresh represent of those nodes
for j in range(0, nums):
if nodes[j].value == value:
nodes[j].value = nodes[node_1].value
total_prices += prices_list[i]
add_order.append(connection_list[i])
print(total_prices, add_order)
return total_prices, add_order
prices = build_map(20)
kruskal(prices, 20)
求MST的方法不光是kruskal,Prim也是可以的。都是贪心思想。
区别:
prim:一个优先队列,每次选择距离当前部分最近的节点加入,直到所有节点都加入。适合稠密图,多用邻接矩阵。
Kruskal:并查集,每次总是选择权重最小的边加入,直到加入n-1条边为止。适合稀疏图,多用领接表。
网友评论