美文网首页
tensorflow实战-6.多层网络解决mnist数字识别

tensorflow实战-6.多层网络解决mnist数字识别

作者: 科幻不再未来 | 来源:发表于2016-10-19 16:02 被阅读0次

    coding=utf-8

    from __future__ import absolute_import
    from __future__ import division
    from __future__ import print_function
    
    import math
    import os.path
    import time
    
    import tensorflow as tf
    from six.moves import xrange  # pylint: disable=redefined-builtin
    from tensorflow.examples.tutorials.mnist import input_data
    from tensorflow.examples.tutorials.mnist import mnist
    
    
    # The MNIST dataset has 10 classes, representing the digits 0 through 9.
    NUM_CLASSES = 10
    
    # The MNIST images are always 28x28 pixels.
    IMAGE_SIZE = 28
    IMAGE_PIXELS = IMAGE_SIZE * IMAGE_SIZE
    
    
    def inference(images, hidden1_units, hidden2_units):
      # 建网络模型,两层
      # 第一层网络,hidden1_units个
      with tf.name_scope('hidden1'):
        weights = tf.Variable(
            tf.truncated_normal([IMAGE_PIXELS, hidden1_units],
                                stddev=1.0 / math.sqrt(float(IMAGE_PIXELS))),
            name='weights')
        biases = tf.Variable(tf.zeros([hidden1_units]),
                             name='biases')
        # 用relu作转换
        hidden1 = tf.nn.relu(tf.matmul(images, weights) + biases)
      # 第二层hidden2_units个
      with tf.name_scope('hidden2'):
        weights = tf.Variable(
            tf.truncated_normal([hidden1_units, hidden2_units],
                                stddev=1.0 / math.sqrt(float(hidden1_units))),
            name='weights')
        biases = tf.Variable(tf.zeros([hidden2_units]),
                             name='biases')
        hidden2 = tf.nn.relu(tf.matmul(hidden1, weights) + biases)
      # 再加一层
      with tf.name_scope('softmax_linear'):
        weights = tf.Variable(
            tf.truncated_normal([hidden2_units, NUM_CLASSES],
                                stddev=1.0 / math.sqrt(float(hidden2_units))),
            name='weights')
        biases = tf.Variable(tf.zeros([NUM_CLASSES]),
                             name='biases')
        logits = tf.matmul(hidden2, weights) + biases
      return logits
    
    
    def lossfunc(logits, labels):
      # labels是一个id列表
      labels = tf.to_int64(labels)
      # softmax转换后求cross_entropy,在求平均
      cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
          logits, labels, name='xentropy')
      loss = tf.reduce_mean(cross_entropy, name='xentropy_mean')
      return loss
    
    
    def training(loss, learning_rate):
      # 利用TensorBoard输出
      tf.scalar_summary(loss.op.name, loss)
      # 用梯度下降学习.
      optimizer = tf.train.GradientDescentOptimizer(learning_rate)
      # 用global_step变量控制迭代次数.
      global_step = tf.Variable(0, name='global_step', trainable=False)
      train_op = optimizer.minimize(loss, global_step=global_step)
      return train_op
    
    
    def evaluation(logits, labels):
      # logits,预测结果,[batch_size, NUM_CLASSES]
      # labels,样本结果,[batch_size]
      # 求top1的logits是否包含label,返回多少个正确的
      correct = tf.nn.in_top_k(logits, labels, 1)
      return tf.reduce_sum(tf.cast(correct, tf.int32))
    
    
    # Basic model parameters as external flags.
    flags = tf.app.flags
    FLAGS = flags.FLAGS
    flags.DEFINE_float('learning_rate', 0.01, 'Initial learning rate.')
    flags.DEFINE_integer('max_steps', 2000, 'Number of steps to run trainer.')
    flags.DEFINE_integer('hidden1', 128, 'Number of units in hidden layer 1.')
    flags.DEFINE_integer('hidden2', 32, 'Number of units in hidden layer 2.')
    flags.DEFINE_integer('batch_size', 100, 'Batch size.  '
                         'Must divide evenly into the dataset sizes.')
    flags.DEFINE_string('train_dir', 'data', 'Directory to put the training data.')
    flags.DEFINE_boolean('fake_data', False, 'If true, uses fake data '
                         'for unit testing.')
    
    
    def placeholder_inputs(batch_size):
      # 初始化placeholder
      images_placeholder = tf.placeholder(tf.float32, shape=(batch_size,
                                                             mnist.IMAGE_PIXELS))
      labels_placeholder = tf.placeholder(tf.int32, shape=(batch_size))
      return images_placeholder, labels_placeholder
    
    
    def fill_feed_dict(data_set, images_pl, labels_pl):
      images_feed, labels_feed = data_set.next_batch(FLAGS.batch_size,
                                                     FLAGS.fake_data)
      feed_dict = {
          images_pl: images_feed,
          labels_pl: labels_feed,
      }
      return feed_dict
    
    
    def do_eval(sess,
                eval_correct,
                images_placeholder,
                labels_placeholder,
                data_set):
      #批量计算eval_correct
      true_count = 0  # Counts the number of correct predictions.
      steps_per_epoch = data_set.num_examples // FLAGS.batch_size
      num_examples = steps_per_epoch * FLAGS.batch_size
      for step in xrange(steps_per_epoch):
        feed_dict = fill_feed_dict(data_set,
                                   images_placeholder,
                                   labels_placeholder)
        true_count += sess.run(eval_correct, feed_dict=feed_dict)
      precision = true_count / num_examples
      print('  Num examples: %d  Num correct: %d  Precision @ 1: %0.04f' %
            (num_examples, true_count, precision))
    
    
    def run_training():
      #载入数据
      data_sets = input_data.read_data_sets(FLAGS.train_dir, FLAGS.fake_data)
    
      # default Graph.
      with tf.Graph().as_default():
        images_placeholder, labels_placeholder = placeholder_inputs(
            FLAGS.batch_size)
        # 网络
        logits = inference(images_placeholder,
                                 FLAGS.hidden1,
                                 FLAGS.hidden2)
        #loss函数
        loss = lossfunc(logits, labels_placeholder)
        # 训练函数
        train_op = training(loss, FLAGS.learning_rate)
        # 评估函数
        eval_correct = evaluation(logits, labels_placeholder)
    
        # Build the summary Tensor based on the TF collection of Summaries.
        summary = tf.merge_all_summaries()
    
        init = tf.initialize_all_variables()
    
        # 用来保存训练checkpoint.
        saver = tf.train.Saver()
    
        sess = tf.Session()
    
        # 初始化一个SummaryWriter
        summary_writer = tf.train.SummaryWriter(FLAGS.train_dir, sess.graph)
    
        sess.run(init)
    
        for step in xrange(FLAGS.max_steps):
          start_time = time.time()
          feed_dict = fill_feed_dict(data_sets.train,
                                     images_placeholder,
                                     labels_placeholder)
    
          _, loss_value = sess.run([train_op, loss],
                                   feed_dict=feed_dict)
    
          duration = time.time() - start_time
    
          if step % 100 == 0:
            print('Step %d: loss = %.2f (%.3f sec)' % (step, loss_value, duration))
            # Update the events file.
            summary_str = sess.run(summary, feed_dict=feed_dict)
            summary_writer.add_summary(summary_str, step)
            summary_writer.flush()
    
          # 保存训练结果.
          if (step + 1) % 1000 == 0 or (step + 1) == FLAGS.max_steps:
            checkpoint_file = os.path.join(FLAGS.train_dir, 'checkpoint')
            saver.save(sess, checkpoint_file, global_step=step)
            # Evaluate against the training set.
            print('Training Data Eval:')
            do_eval(sess,
                    eval_correct,
                    images_placeholder,
                    labels_placeholder,
                    data_sets.train)
            # Evaluate against the validation set.
            print('Validation Data Eval:')
            do_eval(sess,
                    eval_correct,
                    images_placeholder,
                    labels_placeholder,
                    data_sets.validation)
            # Evaluate against the test set.
            print('Test Data Eval:')
            do_eval(sess,
                    eval_correct,
                    images_placeholder,
                    labels_placeholder,
                    data_sets.test)
    
    
    def main(_):
      run_training()
    
    
    if __name__ == '__main__':
      tf.app.run()

    相关文章

      网友评论

          本文标题:tensorflow实战-6.多层网络解决mnist数字识别

          本文链接:https://www.haomeiwen.com/subject/gijtuttx.html