tensorflow多层神经网络学习-实现mnist数字识别

作者: xcrossed | 来源:发表于2017-11-26 22:07 被阅读60次

    tensorflow多层神经网络学习-实现mnist数字识别

    Mnsit数字识别是机器学习的入门学习任务,因为最近在学习tensorflow,本着more practice的原则,用tensorflow也手写一次。

    用tensorflow实现其实非常简单,包含下面几个步骤

    • 因为是监督学习,所以要定义输入和输出,在这里输入是mnist数字集的图片特征,输出是具体0-9数字中的一个,所以输出是10个
    • 定义参数,一般是指weights和bias,这里定义了二层全链接的参数,一般定义时就给定初始值了
    • 定义代价函数,对于概率问题,一般会交叉熵损失函数-p(x)logq(x)
    • 优化方法,一般是梯度下降
    • 其实这个代码损失函数写了三种,一种求均值熵,一种是求和熵,还有均方差,其实均方差也可以的,只不过,可能得不到全局最小值,因为均方差函数的图像可能是一个振荡的波形,不过在这里是可以收敛的,要给定大的学习率,才能达到另外2个的收敛速度。

    下面给出具体代码

    from tensorflow.examples.tutorials.mnist import input_data
    
    import tensorflow as tf
    
    
    # define Parameter
    learning_rate = 0.01
    train_step = 20000
    batch_size = 100
    input_node = 28 * 28
    output_node = 10
    layer1_node = 500
    
    
    def train(mnist):
        x = tf.placeholder(tf.float32, shape=[None, input_node], name="x-input")
        y_ = tf.placeholder(
            tf.float32, shape=[None, output_node], name='label-input')
        # define variable
        w1 = tf.Variable(tf.truncated_normal(
            [input_node, layer1_node],  stddev=0.1, dtype=tf.float32))
        b1 = tf.Variable(tf.constant(0, dtype=tf.float32, shape=[layer1_node]))
    
        w2 = tf.Variable(
            tf.truncated_normal([layer1_node, output_node], stddev=0.1, dtype=tf.float32))
        b2 = tf.Variable(tf.constant(0, dtype=tf.float32, shape=[output_node]))
    
        layer1 = tf.nn.relu(tf.matmul(x, w1) + b1)
        y = tf.matmul(layer1, w2) + b2
    
        # define optimizie and loss function
        cross_entropy = - y_ * \
            tf.log(tf.clip_by_value(tf.nn.softmax(y), 1e-10, 1.0))
    
    #     cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
    #         labels=y_, logits=y)
    # #
        loss = tf.reduce_sum(cross_entropy)
    
    #     loss = tf.reduce_mean(tf.square(y - y_))
    
        global_step = tf.Variable(0, trainable=False)
        train_op = tf.train.GradientDescentOptimizer(
            learning_rate).minimize(loss, global_step=global_step)
    
        correct_predict = tf.equal(tf.argmax(y_, 1), tf.argmax(y, 1))
        accuracy = tf.reduce_mean(tf.cast(correct_predict, tf.float32))
    
        with tf.Session() as session:
            session.run(tf.global_variables_initializer())
            validate_feed = {
                x: mnist.validation.images, y_: mnist.validation.labels}
            test_feed = {x: mnist.test.images, y_: mnist.test.labels}
    
            for i in range(train_step):
                if i % 100 == 0:
                    validate_acc = session.run(accuracy, feed_dict=validate_feed)
                    print("After %d training step(s), validation accuracy using sum model is %g " % (
                        i, validate_acc))
                xs, ys = mnist.train.next_batch(batch_size)
                session.run(train_op, feed_dict={x: xs, y_: ys})
            test_acc = session.run(accuracy, feed_dict=test_feed)
            print("After %d training step(s), test accuracy using sum model is %g" % (
                train_step, test_acc))
    
    
    def main(argv=None):
        mnist = input_data.read_data_sets("D:/download/minst", one_hot=True)
        train(mnist)
    
    if __name__ == '__main__':
        tf.app.run()
    
    

    相关文章

      网友评论

        本文标题:tensorflow多层神经网络学习-实现mnist数字识别

        本文链接:https://www.haomeiwen.com/subject/ufmlbxtx.html