美文网首页
Ubuntu AI环境配置

Ubuntu AI环境配置

作者: 大道至简非简 | 来源:发表于2019-07-08 17:32 被阅读0次

    把apt的源换成阿里云或国内其它,速度超快。
    vi /etc/apt/sources.list
    全部替换

    deb http://mirrors.aliyun.com/ubuntu/ bionic main restricted universe multiverse
    deb http://mirrors.aliyun.com/ubuntu/ bionic-security main restricted universe multiverse
    deb http://mirrors.aliyun.com/ubuntu/ bionic-updates main restricted universe multiverse
    deb http://mirrors.aliyun.com/ubuntu/ bionic-proposed main restricted universe multiverse
    deb http://mirrors.aliyun.com/ubuntu/ bionic-backports main restricted universe multiverse
    deb-src http://mirrors.aliyun.com/ubuntu/ bionic main restricted universe multiverse
    deb-src http://mirrors.aliyun.com/ubuntu/ bionic-security main restricted universe multiverse
    deb-src http://mirrors.aliyun.com/ubuntu/ bionic-updates main restricted universe multiverse
    deb-src http://mirrors.aliyun.com/ubuntu/ bionic-proposed main restricted universe multiverse
    deb-src http://mirrors.aliyun.com/ubuntu/ bionic-backports main restricted universe multiverse
    
    
    

    更换后秒下安装。
    sudo apt-get update && sudo apt-get upgrade

    一、Cuda10.1安装

    驱动已经事先安装,显卡gtx1660.

    https://developer.nvidia.com/cuda-10.0-download-archive?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=1804&target_type=runfilelocal

    1.1下载安装包

    image.png

    找到对应的版本下载;(用迅雷下载会快不少,下载完传到Ubuntu机器)


    image.png
    tensorflow 1.13.1只支持到cuda10.0

    1.2安装

    查看下载文件

    root@doyen-ai:/home/software/ubuntu18.04_cuda10.0# ls
    cuda_10.0.130_410.48_linux.run                  libcudnn7-dev_7.5.1.10-1+cuda10.0_amd64.deb
    cudnn-10.0-linux-x64-v7.5.1.10.solitairetheme8  libcudnn7-doc_7.5.1.10-1+cuda10.0_amd64.deb
    libcudnn7_7.5.1.10-1+cuda10.0_amd64.deb
    
    

    开始安装;
    sudo sh cuda_10.0.130_410.48_linux.run


    image.png

    协议好长啊,得回车半天。(cuda10.1就改进的很好)

    Do you accept the previously read EULA?
    accept/decline/quit: accept
    
    Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 410.48?
    (y)es/(n)o/(q)uit: n
    
    Install the CUDA 10.0 Toolkit?
    (y)es/(n)o/(q)uit: y
    
    Enter Toolkit Location
     [ default is /usr/local/cuda-10.0 ]:  
    
    Do you want to install a symbolic link at /usr/local/cuda?
    (y)es/(n)o/(q)uit: y
    
    Install the CUDA 10.0 Samples?
    (y)es/(n)o/(q)uit: y
    
    Enter CUDA Samples Location
     [ default is /root ]: 
    
    Installing the CUDA Toolkit in /usr/local/cuda-10.0 ...
    Missing recommended library: libGLU.so
    Missing recommended library: libX11.so
    Missing recommended library: libXi.so
    Missing recommended library: libXmu.so
    
    Installing the CUDA Samples in /root ...
    Copying samples to /root/NVIDIA_CUDA-10.0_Samples now...
    Finished copying samples.
    
    ===========
    = Summary =
    ===========
    
    Driver:   Not Selected
    Toolkit:  Installed in /usr/local/cuda-10.0
    Samples:  Installed in /root, but missing recommended libraries
    
    Please make sure that
     -   PATH includes /usr/local/cuda-10.0/bin
     -   LD_LIBRARY_PATH includes /usr/local/cuda-10.0/lib64, or, add /usr/local/cuda-10.0/lib64 to /etc/ld.so.conf and run ldconfig as root
    
    To uninstall the CUDA Toolkit, run the uninstall script in /usr/local/cuda-10.0/bin
    
    Please see CUDA_Installation_Guide_Linux.pdf in /usr/local/cuda-10.0/doc/pdf for detailed information on setting up CUDA.
    
    ***WARNING: Incomplete installation! This installation did not install the CUDA Driver. A driver of version at least 384.00 is required for CUDA 10.0 functionality to work.
    To install the driver using this installer, run the following command, replacing <CudaInstaller> with the name of this run file:
        sudo <CudaInstaller>.run -silent -driver
    
    Logfile is /tmp/cuda_install_16565.log
    
    
    

    提示安装成功;

    1.3校验

    vi ~/.bashrc
    在文件最后加上:

    export PATH=/usr/local/cuda-10.0/bin${PATH:+:${PATH}}
    export LD_LIBRARY_PATH=/usr/local/cuda-10.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
    
    

    命令 source ~/.bashrc 使其生效
    查看nvcc -V

    root@doyen-ai:/home/software/ubuntu18.04_cuda10.0# source ~/.bashrc
    root@doyen-ai:/home/software/ubuntu18.04_cuda10.0# nvcc -V
    nvcc: NVIDIA (R) Cuda compiler driver
    Copyright (c) 2005-2018 NVIDIA Corporation
    Built on Sat_Aug_25_21:08:01_CDT_2018
    Cuda compilation tools, release 10.0, V10.0.130
    
    

    安装成功;

    二、Cudnn7.5.1安装

    2.1下载安装包

    https://developer.nvidia.com/rdp/cudnn-download
    cudnn需要注册登录方可下载;

    image.png

    下载红框内标记内容;

    2.2安装

    tar -zxvf cudnn-10.0-linux-x64-v7.5.1.10.tgz
    sudo cp cuda/include/cudnn.h /usr/local/cuda/include
    sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
    sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
    
    sudo dpkg -i libcudnn7_7.5.1.10-1+cuda10.0_amd64.deb
    sudo dpkg -i libcudnn7-dev_7.5.1.10-1+cuda10.0_amd64.deb
    sudo dpkg -i libcudnn7-doc_7.5.1.10-1+cuda10.0_amd64.deb
    
    

    执行结果

    root@doyen-ai:/home/software/ubuntu18.04_cuda10.0# tar -zxvf cudnn-10.0-linux-x64-v7.5.1.10.tgz
    1.10-1+cuda10.0_amd64.deb
    sudo dpkg -i libcudnn7-dev_7.5.1.10-1+cuda10.0_amd64.deb
    sudo dpkg -i libcudnn7-doc_7.5.1.10-1+cuda10.0_amd64.debcuda/include/cudnn.h
    cuda/NVIDIA_SLA_cuDNN_Support.txt
    cuda/lib64/libcudnn.so
    cuda/lib64/libcudnn.so.7
    cuda/lib64/libcudnn.so.7.5.1
    cuda/lib64/libcudnn_static.a
    root@doyen-ai:/home/software/ubuntu18.04_cuda10.0# sudo cp cuda/include/cudnn.h /usr/local/cuda/include
    root@doyen-ai:/home/software/ubuntu18.04_cuda10.0# sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
    root@doyen-ai:/home/software/ubuntu18.04_cuda10.0# sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libc
    root@doyen-ai:/home/software/ubuntu18.04_cuda10.0# 
    root@doyen-ai:/home/software/ubuntu18.04_cuda10.0# sudo dpkg -i libcudnn7_7.5.1.10-1+cuda10.0_amd64.deb
    正在选中未选择的软件包 libcudnn7。
    (正在读取数据库 ... 系统当前共安装有 168675 个文件和目录。)
    正准备解包 libcudnn7_7.5.1.10-1+cuda10.0_amd64.deb  ...
    正在解包 libcudnn7 (7.5.1.10-1+cuda10.0) ...
    正在设置 libcudnn7 (7.5.1.10-1+cuda10.0) ...
    正在处理用于 libc-bin (2.27-3ubuntu1) 的触发器 ...
    root@doyen-ai:/home/software/ubuntu18.04_cuda10.0# sudo dpkg -i libcudnn7-dev_7.5.1.10-1+cuda10.0_amd64.deb
    正在选中未选择的软件包 libcudnn7-dev。
    (正在读取数据库 ... 系统当前共安装有 168681 个文件和目录。)
    正准备解包 libcudnn7-dev_7.5.1.10-1+cuda10.0_amd64.deb  ...
    正在解包 libcudnn7-dev (7.5.1.10-1+cuda10.0) ...
    正在设置 libcudnn7-dev (7.5.1.10-1+cuda10.0) ...
    update-alternatives: 使用 /usr/include/x86_64-linux-gnu/cudnn_v7.h 来在自动模式中提供 /usr/include/cudnn.h (libcudnn)
    root@doyen-ai:/home/software/ubuntu18.04_cuda10.0# sudo dpkg -i libcudnn7-doc_7.5.1.10-1+cuda10.0_amd64.deb
    正在选中未选择的软件包 libcudnn7-doc。
    (正在读取数据库 ... 系统当前共安装有 168687 个文件和目录。)
    正准备解包 libcudnn7-doc_7.5.1.10-1+cuda10.0_amd64.deb  ...
    正在解包 libcudnn7-doc (7.5.1.10-1+cuda10.0) ...
    正在设置 libcudnn7-doc (7.5.1.10-1+cuda10.0) ...
    
    
    

    2.3校验

    查看cudnn版本命令
    cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

    root@doyen-ai:/home/software/ubuntu18.04_cuda10.0# cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2
    #define CUDNN_MAJOR 7
    #define CUDNN_MINOR 5
    #define CUDNN_PATCHLEVEL 1
    --
    #define CUDNN_VERSION (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL)
    
    #include "driver_types.h"
    
    

    正常运行;

    三、tensorflow-gpu安装

    3.1查看python环境

    root@doyen-ai:/home# python
    
    Command 'python' not found, but can be installed with:
    
    apt install python3       
    apt install python        
    apt install python-minimal
    
    You also have python3 installed, you can run 'python3' instead.
    
    

    Ubuntu18.04默认安装了python3.6.8
    ···
    root@doyen-ai:/home# python3
    Python 3.6.8 (default, Jan 14 2019, 11:02:34)
    [GCC 8.0.1 20180414 (experimental) [trunk revision 259383]] on linux
    Type "help", "copyright", "credits" or "license" for more information.

    ···

    3.2安装pip

    apt-get install python3-pip python3-dev

    root@doyen-ai:/home# pip3 -V
    pip 9.0.1 from /usr/lib/python3/dist-packages (python 3.6)
    
    

    再安装setuptools
    pip3 install setuptools --upgrade

    3.3安装tensorflow-gpu

    pip3 install tensorflow-gpu

    root@doyen-ai:/home# pip3 install tensorflow-gpu
    Collecting tensorflow-gpu
      Downloading https://files.pythonhosted.org/packages/7b/b1/0ad4ae02e17ddd62109cd54c291e311c4b5fd09b4d0678d3d6ce4159b0f0/tensorflow_gpu-1.13.1-cp36-cp36m-manylinux1_x86_64.whl (345.2MB)
    
    Successfully installed absl-py-0.7.1 astor-0.7.1 gast-0.2.2 grpcio-1.20.1 h5py-2.9.0 keras-applications-1.0.7 keras-preprocessing-1.0.9 markdown-3.1 mock-3.0.5 numpy-1.16.3 protobuf-3.7.1 tensorboard-1.13.1 tensorflow-estimator-1.13.0 tensorflow-gpu-1.13.1 termcolor-1.1.0 werkzeug-0.15.4
    
    

    提示安装完成;

    3.4检验安装

    root@doyen-ai:/home# python3
    Python 3.6.8 (default, Jan 14 2019, 11:02:34) 
    [GCC 8.0.1 20180414 (experimental) [trunk revision 259383]] on linux
    Type "help", "copyright", "credits" or "license" for more information.
    >>> import tensorflow as tf
    >>> a = tf.random_normal((100, 100))
    >>> b = tf.random_normal((100, 500))
    >>> c = tf.matmul(a, b)
    >>> sess = tf.InteractiveSession()
    2019-05-16 15:57:26.741765: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
    2019-05-16 15:57:27.372247: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:998] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
    2019-05-16 15:57:27.373652: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x1619150 executing computations on platform CUDA. Devices:
    2019-05-16 15:57:27.373734: I tensorflow/compiler/xla/service/service.cc:158]   StreamExecutor device (0): GeForce GTX 1660, Compute Capability 7.5
    2019-05-16 15:57:27.400388: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 2904000000 Hz
    2019-05-16 15:57:27.401583: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x1cdd240 executing computations on platform Host. Devices:
    2019-05-16 15:57:27.401651: I tensorflow/compiler/xla/service/service.cc:158]   StreamExecutor device (0): <undefined>, <undefined>
    2019-05-16 15:57:27.402011: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1433] Found device 0 with properties: 
    name: GeForce GTX 1660 major: 7 minor: 5 memoryClockRate(GHz): 1.83
    pciBusID: 0000:01:00.0
    totalMemory: 5.80GiB freeMemory: 5.73GiB
    2019-05-16 15:57:27.402066: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1512] Adding visible gpu devices: 0
    2019-05-16 15:57:27.405302: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] Device interconnect StreamExecutor with strength 1 edge matrix:
    2019-05-16 15:57:27.405366: I tensorflow/core/common_runtime/gpu/gpu_device.cc:990]      0 
    2019-05-16 15:57:27.405390: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1003] 0:   N 
    2019-05-16 15:57:27.405581: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 5567 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1660, pci bus id: 0000:01:00.0, compute capability: 7.5)
    >>> sess.run(c)
    2019-05-16 15:57:45.835122: I tensorflow/stream_executor/dso_loader.cc:152] successfully opened CUDA library libcublas.so.10.0 locally
    array([[  6.262812 ,  -1.9345528,  10.1873865, ...,   9.533573 ,
             -7.4053297,  -4.2541947],
           [ 10.201033 ,   3.6828916,  -2.0874305, ...,  11.704482 ,
              2.2292233, -12.751171 ],
           [ -4.9506807,  -7.9405203,  11.641254 , ...,  10.210195 ,
             -3.6261683,  -1.245208 ],
           ...,
           [  6.1733346, -11.296464 ,  -6.5138006, ...,  -8.0698185,
             -4.31228  ,   6.034325 ],
           [  8.435815 ,  -6.479247 ,  -1.6091456, ...,   5.5824223,
              5.4707727,  11.140205 ],
           [ -8.973054 , -10.001549 , -15.808032 , ...,  20.240196 ,
              7.126047 ,   9.673972 ]], dtype=float32)
    >>> 
    
    
    

    感觉Ubuntu18.04 gtx1660显卡比win10版本gtx1060显卡速度快很多。

    四、安装opencv4.1带cuda应用

    4.1安装脚本

    安装教程很多,整个脚本自动运行就好试试看。匹配Ubuntu 18.04.
    找到cuda相关的显卡算力是6.1,算力地址是:
    https://developer.nvidia.com/cuda-gpus
    脚本默认下载opencv源码是dev版本。
    稳定版请用相关语句替换

    curl -L https://github.com/opencv/opencv/archive/4.1.0.zip -o opencv.zip
    curl -L https://github.com/opencv/opencv_contrib/archive/4.1.0.zip -o opencv_contrib.zip
    unzip opencv.zip 
    unzip opencv_contrib.zip 
    cd opencv/
    
    

    installOpenCV-4-on-Ubuntu-18-04.sh

    #!/bin/bash
    #
    if [ "$#" -ne 1 ]; then
        echo "Usage: $0 <Install Folder>"
        exit
    fi
    folder="$1"
    
    echo "** Install requirement"
    sudo apt-get update
    sudo apt-get install -y build-essential cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev pkg-config
    sudo apt-get install -y libgstreamer1.0-dev libgstreamer-plugins-base1.0-dev
    sudo apt-get install -y python2.7-dev python3.6-dev python-dev python-numpy python3-numpy
    sudo apt-get install -y libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev libjasper-dev libdc1394-22-dev
    sudo apt-get install -y libv4l-dev v4l-utils qv4l2 v4l2ucp 
    sudo apt-get install -y curl
    sudo apt-get update
    
    echo "** Download opencv-4.1.0"
    cd $folder
    curl -L https://github.com/opencv/opencv/archive/4.1.0.zip -o opencv-4.1.0.zip
    curl -L https://github.com/opencv/opencv_contrib/archive/4.1.0.zip -o opencv_contrib-4.1.0.zip
    unzip opencv-4.1.0.zip 
    unzip opencv_contrib-4.1.0.zip 
    cd opencv-4.1.0/
    
    echo "** Building..."
    mkdir release
    cd release/
    cmake \
      -D CMAKE_BUILD_TYPE=RELEASE \
      -D OPENCV_GENERATE_PKGCONFIG=YES \
      -D CMAKE_INSTALL_PREFIX=/usr/local \
      -D OPENCV_EXTRA_MODULES_PATH=../../opencv_contrib-4.1.0/modules  \
      -D CUDA_CUDA_LIBRARY=/usr/local/cuda/lib64/stubs/libcuda.so \
      -D CUDA_ARCH_BIN=6.1 \
      -D CUDA_ARCH_PTX="" \
      -D WITH_CUDA=ON \
      -D WITH_TBB=ON \
      -D BUILD_opencv_python3=ON \
      -D BUILD_TESTS=OFF \
      -D BUILD_PERF_TESTS=OFF \
      -D WITH_V4L=ON \
      -D INSTALL_C_EXAMPLES=ON \
      -D INSTALL_PYTHON_EXAMPLES=ON \
      -D BUILD_EXAMPLES=ON \
      -D WITH_OPENGL=ON \
      -D ENABLE_FAST_MATH=1 \
      -D CUDA_FAST_MATH=1 \
      -D WITH_CUBLAS=1 \
      -D WITH_NVCUVID=ON \
      -D WITH_GSTREAMER=ON \
      -D WITH_OPENCL=YES \
      -D WITH_QT=ON \
      -D BUILD_opencv_cudacodec=OFF ..
    
    make -j8
    sudo make install
    echo "** Install opencv-4.1.0 successfully"
    echo "** Bye :)"
    
    

    如果碰到下载不下来的,可以先下载然后改相关的路径重新cmake即可。


    image.png
    image.png

    4.2测试python opencv4

    root@doyen-ai:/home/software/opencv/build# python3
    Python 3.6.8 (default, Jan 14 2019, 11:02:34) 
    [GCC 8.0.1 20180414 (experimental) [trunk revision 259383]] on linux
    Type "help", "copyright", "credits" or "license" for more information.
    >>> import cv2
    >>> print(cv2.__version__)
    4.1.0-dev
    
    
    

    五、安装pytorch1.1带cuda10.0

    https://pytorch.org/get-started/locally/

    image.png
    pip3 install https://download.pytorch.org/whl/cu100/torch-1.1.0-cp36-cp36m-linux_x86_64.whl
    pip3 install torchvision
    
    root@doyen-ai:/home/software# python3
    Python 3.6.8 (default, Jan 14 2019, 11:02:34) 
    [GCC 8.0.1 20180414 (experimental) [trunk revision 259383]] on linux
    Type "help", "copyright", "credits" or "license" for more information.
    >>> import torch
    >>> 
    
    
    

    正常加载;

    六、安装mxnet

    http://mxnet.incubator.apache.org

    image.png
    cuda10.0
    需要用
    pip3 install mxnet-cu100
    root@doyen-ai:/home/software# python3
    Python 3.6.8 (default, Jan 14 2019, 11:02:34) 
    [GCC 8.0.1 20180414 (experimental) [trunk revision 259383]] on linux
    Type "help", "copyright", "credits" or "license" for more information.
    >>> import mxnet as mx
    >>> mx.__version__
    '1.4.1'
    >>> a = mx.nd.ones((2, 3), mx.gpu())
    >>> b  = a*2+1
    >>> b
    [[3. 3. 3.]
     [3. 3. 3.]]
    <NDArray 2x3 @gpu(0)>
    >>> 
    
    

    全文完
    (折腾10个小时左右,cuda10.1不支持tensorflow1.13,重新安装系统花费时间较长,编译opencv4花费时间较长)。

    相关文章

      网友评论

          本文标题:Ubuntu AI环境配置

          本文链接:https://www.haomeiwen.com/subject/giuahctx.html