美文网首页程序员程序园
c/c++带权中位数(O(n)复杂度)

c/c++带权中位数(O(n)复杂度)

作者: 你猪头啊 | 来源:发表于2019-03-28 20:11 被阅读1次

    题目:

    给定一个未排序的数组(x1, x2, … ,xn),其中每个元素关联一个权值:(w1, w2, … ,wn),且。请设计一个线性时间的算法,在该数组中查找其带权中位数xk,满足:

    在这里插入图片描述

    算法思想:

    线性时间算法即为O(n),联想到之前写过的Select过程中的partition,选定一个pivot,将数组分成小于基数与大于基数的两部分,再计算两部分的权重和,如果左边的权重和大于右边的权重和,那么说明带权中位数在左边,对左边进行递归寻找,若左边权重和小于右边权重和,那么就说明,带权中位数在右边对右边进行递归寻找。

    代码:

    #include <iostream>
    #include <vector>
    #include <iomanip>
    using namespace std;
    struct Node
    {
        int value;
        double weight;
    };
    int partition(vector<Node>&A, int p, int r)
    {
        int less = p - 1, i;
        int pivot = p + rand() % (r - p + 1);
        for (i = p; i <= r; i++)
        {
            if (A[i].value < A[pivot].value)
            {
                less++;
                swap(A[less], A[i]);
            }
        }
        swap(A[less + 1], A[pivot]);
        return less + 1;
    }
    int WeightedMedian(vector<Node>&A, int p, int r)
    {
        if (p == r)
            return A[p].value;
        if (r - p == 1)
        {
            if (A[p].weight == A[r].weight)
                return (A[p].value + A[r].value) / 2;
            if (A[p].weight > A[r].weight)
                return A[p].value;
            else
                return A[r].value;
        }
        int q = partition(A, p, r);
        double wl = 0, wr = 0;
        for (int i = p; i <= q - 1; i++)
        {
            wl += A[i].weight;
        }
        for (int i = q + 1; i <= r; i++)
        {
            wr += A[i].weight;
        }
        if (wr < 0.5&&wl < 0.5)
            return A[q].value;
        else
        {
            if (wl > wr)
            {
                A[q].weight += wr;
                WeightedMedian(A, p, q);
            }
            else
            {
                A[q].weight += wl;
                WeightedMedian(A, q, r);
            }
        }
    }
    void Print(vector<Node>A)
    {
        for (int i = 0; i < A.size(); i++)
            cout << A[i].value << " ";
        cout << endl;
        for (int i = 0; i < A.size(); i++)
            cout <</*setprecision(2)<< */A[i].weight<<" ";
        cout << endl;
    }
    void Initial(vector<int>&B,int n)
    {
        for (int i = 0; i < n; i++)
        {
            B.push_back(0);
        }
    }
    int main(void)
    {
        int n, sum = 0;
        cin >> n;
        vector<Node>A;
        vector<int>B;
        A.resize(n);
        B.resize(n);
        Initial(B,n);
        for (int i = 0; i < n; i++)
        {
            A[i].value = rand() % 100;
            do { B[i] = rand() % 100; } while (B[i] == 0);
            sum += B[i];
        }
        for (int i = 0; i < n; i++)
        {
            A[i].weight = (double)B[i] / sum;
        }
        Print(A);
        cout << WeightedMedian(A, 0, n - 1);
        system("pause");
        return 0;
    }
    

    相关文章

      网友评论

        本文标题:c/c++带权中位数(O(n)复杂度)

        本文链接:https://www.haomeiwen.com/subject/gjacbqtx.html