美文网首页禅与计算机程序设计艺术
【图解】红黑树的操作和源代码

【图解】红黑树的操作和源代码

作者: 光剑书架上的书 | 来源:发表于2020-10-31 17:38 被阅读0次
Node(4000) and parent Node(3000) are both red。 RotateLeft(4000):以Node(4000)为支点,左旋

public void leftRotate(TreeNode x) {

    TreeNode y = x.right;

    x.right = y.left;

    if(y.left != this.NIL) {

      y.left.parent = x;

    }

    y.parent = x.parent;

    if(x.parent == this.NIL) { //x is root

      this.root = y;

    }

    else if(x == x.parent.left) { //x is left child

      x.parent.left = y;

    }

    else { //x is right child

      x.parent.right = y;

    }

    y.left = x;

    x.parent = y;

  }

Node(3000) and Node(4000) are both red, Node(3000) is left child, parent Node(4000) is left child of Node(5000), can fix with a single rotation. LR(4000). x is Node(4000), y=x.left is Node(3000)

public void rightRotate(TreeNode x) {

    TreeNode y = x.left;

    x.left = y.right;

    if(y.right != this.NIL) {

      y.right.parent = x;

    }

    y.parent = x.parent;

    if(x.parent == this.NIL) { //x is root

      this.root = y;

    }

    else if(x == x.parent.right) { //x is left child

      x.parent.right = y;

    }

    else { //x is right child

      x.parent.left = y;

    }

    y.right = x;

    x.parent = y;

  }

完整源代码

enum Color {

  Red, Black

}

class TreeNode {

  public int data;

  public TreeNode right;

  public TreeNode left;

  public TreeNode parent;

  public Color color;

  public TreeNode(int data) {

    this.left = null;

    this.right = null;

    this.parent = null;

    this.data = data;

    this.color = Color.Red;

  }

}

class RedBlackTree {

  TreeNode root;

  TreeNode NIL;

  public RedBlackTree() {

    TreeNode nilNode = new TreeNode(0);

    nilNode.color = Color.Black;

    this.NIL = nilNode;

    this.root = this.NIL;

  }

  public void leftRotate(TreeNode x) {

    TreeNode y = x.right;

    x.right = y.left;

    if(y.left != this.NIL) {

      y.left.parent = x;

    }

    y.parent = x.parent;

    if(x.parent == this.NIL) { //x is root

      this.root = y;

    }

    else if(x == x.parent.left) { //x is left child

      x.parent.left = y;

    }

    else { //x is right child

      x.parent.right = y;

    }

    y.left = x;

    x.parent = y;

  }

  public void rightRotate(TreeNode x) {

    TreeNode y = x.left;

    x.left = y.right;

    if(y.right != this.NIL) {

      y.right.parent = x;

    }

    y.parent = x.parent;

    if(x.parent == this.NIL) { //x is root

      this.root = y;

    }

    else if(x == x.parent.right) { //x is left child

      x.parent.right = y;

    }

    else { //x is right child

      x.parent.left = y;

    }

    y.right = x;

    x.parent = y;

  }

  public void insertFixup(TreeNode z) {

    while(z.parent.color == Color.Red) {

      if(z.parent == z.parent.parent.left) { //z.parent is the left child

        TreeNode y = z.parent.parent.right; //uncle of z

        if(y.color == Color.Red) { //case 1

          z.parent.color = Color.Black;

          y.color = Color.Black;

          z.parent.parent.color = Color.Red;

          z = z.parent.parent;

        }

        else { //case2 or case3

          if(z == z.parent.right) { //case2

            z = z.parent; //marked z.parent as new z

            leftRotate(z);

          }

          //case3

          z.parent.color = Color.Black; //made parent black

          z.parent.parent.color = Color.Red; //made parent red

          rightRotate(z.parent.parent);

        }

      }

      else { //z.parent is the right child

        TreeNode y = z.parent.parent.left; //uncle of z

        if(y.color == Color.Red) {

          z.parent.color = Color.Black;

          y.color = Color.Black;

          z.parent.parent.color = Color.Red;

          z = z.parent.parent;

        }

        else {

          if(z == z.parent.left) {

            z = z.parent; //marked z.parent as new z

            rightRotate(z);

          }

          z.parent.color = Color.Black; //made parent black

          z.parent.parent.color = Color.Red; //made parent red

          leftRotate(z.parent.parent);

        }

      }

    }

    this.root.color = Color.Black;

  }

  public void insert(TreeNode z) {

    TreeNode y = this.NIL; //variable for the parent of the added node

    TreeNode temp = this.root;

    while(temp != this.NIL) {

      y = temp;

      if(z.data < temp.data)

        temp = temp.left;

      else

        temp = temp.right;

    }

    z.parent = y;

    if(y == this.NIL) { //newly added node is root

      this.root = z;

    }

    else if(z.data < y.data) //data of child is less than its parent, left child

      y.left = z;

    else

      y.right = z;

    z.right = this.NIL;

    z.left = this.NIL;

    insertFixup(z);

  }

  public void inorder(TreeNode n) {

    if(n != this.NIL) {

      inorder(n.left);

      System.out.println(n.data);

      inorder(n.right);

    }

  }

  public static void main(String[] args) {

    RedBlackTree t = new RedBlackTree();

    TreeNode a, b, c, d, e, f, g, h, i, j, k, l, m;

    a = new TreeNode(10);

    b = new TreeNode(20);

    c = new TreeNode(30);

    d = new TreeNode(100);

    e = new TreeNode(90);

    f = new TreeNode(40);

    g = new TreeNode(50);

    h = new TreeNode(60);

    i = new TreeNode(70);

    j = new TreeNode(80);

    k = new TreeNode(150);

    l = new TreeNode(110);

    m = new TreeNode(120);

    t.insert(a);

    t.insert(b);

    t.insert(c);

    t.insert(d);

    t.insert(e);

    t.insert(f);

    t.insert(g);

    t.insert(h);

    t.insert(i);

    t.insert(j);

    t.insert(k);

    t.insert(l);

    t.insert(m);

    t.inorder(t.root);

  }

}

参考资料:

https://www.cs.usfca.edu/~galles/visualization/RedBlack.html

https://www.codesdope.com/course/data-structures-red-black-trees-insertion/

专注分享 Java、 Kotlin、Spring/Spring Boot、MySQL、redis、neo4j、NoSQL、Android、JavaScript、React、Node、函数式编程、编程思想、"高可用,高性能,高实时"大型分布式系统架构设计主题。

相关文章

  • 【图解】红黑树的操作和源代码

    public void leftRotate(TreeNode x) { TreeNode y = x.rig...

  • Collection

    图解集合 8 : 红黑树的移除节点操作 图解集合7:红黑树概念、红黑树的插入及旋转操作详细解读 图解集合 6 : ...

  • 图解红黑树

    红黑树(英语:Red–black tree)是一种自平衡二叉查找树,是在计算机科学中用到的一种数据结构,典型的用途...

  • 数据结构-红黑树学习笔记(转)

    rbt(红黑树) 图解红黑树:https://www.jianshu.com/p/0eaea4cc5619数据结构...

  • 图解红黑树插入

    在复习红黑树的实现时,被网上的一些讲解绕很晕,比如说:这篇。 红黑树本身是一颗二叉查找树,其查询、插入、删除等操作...

  • 红黑树

    参考文章:五分钟搞懂什么事红黑树(全程图解)) 在JDK 1.8之后,HashMap中引入了红黑树,当Entry链...

  • 图解红黑树 Java实现

    完整代码:https://github.com/nicktming/code/blob/dev/data_stru...

  • 数据结构—树—红黑树

    红黑树概述 红黑树的插入 红黑树的删除

  • 2020-07-23

    理解红黑树很难?不存在的,史上最详细的红黑树图解 HashMap的实现原理可以说是面试中必问的一道面试题了,它可以...

  • 2021-02-18 假期刚过,面试你准备了HashMap吗

    程序的本质是数据结构和算法(执行逻辑)数组栈队列链表树散列表堆图 图解HashMap 数组 + 链表 + 红黑树 ...

网友评论

    本文标题:【图解】红黑树的操作和源代码

    本文链接:https://www.haomeiwen.com/subject/glwsvktx.html