美文网首页Python随手查我爱编程
用python做数据分析3|pandas库介绍之两种数据结构Se

用python做数据分析3|pandas库介绍之两种数据结构Se

作者: 是蓝先生 | 来源:发表于2016-04-28 18:06 被阅读3829次

今天是4.30号。

由于pandas部分内容很多,所以接下来会分多个部分进行学习。
这一部分也是pandas学习的第一部分,先了解两种主要的数据结构。

import pandas as pd
from pandas import Series,DataFrame
因为Series和DataFrame用的次数非常多,所以将其引入本地命名空间中会更方便。


(1)Series

Series是一种类似与一维数组的对象,它由一组数据以及一组与之相关的数据便签(即索引)组成,仅由一组数据即可产生最简单的Series。

例如:a=Series([9,-3,4,2])
得到的结果为:
0    9
1    -3
2    4
3    2
系统会自动为Series数据创建整数索引,可通过Series的values和index属性获取其数组表示形式和索引对象
    print(Series.values)
    print(Series.index)
这与字典型数据的keys(),values(),items()类似。

同时我们在创建Series时也可以自定义索引值:
    b=Series([9,-3,4,2],index=['a','c','d','b'])
那么访问Series中的值时可以直接用b['index']的方法,例如b['c'],b[['d','a']]可以同时选取多个值。

也可以直接将一个字典型数据a转化为Series数据,Series(a)

pandas中用NA表示数据缺失,isnull()和notnull()可用于检测缺失数据,用法为:a.isnull(),a.notnull()

(2)DataFrame

DataFrame是一个表格型数据,含有一组有序的列,每一列可以是不同的类型值。DataFrame可以看成是由多个Series组成的字典,它们共用一个索引。

在构建DataFrame时,最最最常用的就是先创建一个data,data一般可以是字典和数组,再用a=DataFrame(data)来转换为DataFrame结构。在DataFrame(data)时也可以同时传入index和columns参数,两个参数必须是列表型。

1).构建DataFrame最常见的方法是传入一个由等长列表或数组组成的字典:
例如:
    data={
              'name':['bon','kate','jun','sam'],
              'stature':['102','112','136','90'],
              'grade':['70','76','98','88']
          }
    frame=DataFrame(data)
DataFrame会自动加上索引,得到的结果为:
         name        stature        grade
0        bon          102            70
1        kate         112            76
2        jun          136            98
3        sam          90             88


2).也可以为DataFrame指定索引

    frame2=DataFrame(data,columns=['name','grade','stature','birthdate'],
                     index=['one','two','three','four'])

跟Series中一样若在对应的列中找不到数据,就会产生缺失值NaN.
           name        grade       stature     birthdate
one        bon          70          102          NaN
two        kate         76          112          NaN
three      jun          98          136          NaN
four       sam          88          90           NaN

3).取值和赋值
  查看列:可用类似字典的方式获取一个Series(即一个列的值),如:frame2['name'];
  查看行:可用索引字段ix来获取某行的值,如:frame2.ix['three'];
  可用frame2['birthdate']=1990来直接对某一列进行赋值;

4).删除某一列的值
    del frame2['name']

5)将嵌套型字典转化为DataFrame型时,外层的键作为列,内层的键作为行索引
例如:
    data={
          'newyork':{'2001':51,'2002':76},
          'houston':{'2001':49,'2002':90},
          }
  DataFrame(data)得到结果为:
           newyork     houston      
  2001       51          49           
  2002       76          90

对于取DataFrame类型数据a中特定位置的数据

可以先找到对应的index,再采用a[index,'columns']得到。
而index可以根据有对应某一个字段的value得到:
例如已知a中column为name这一栏下的某个值为kate,则索引可由下面求得。
get_index=list(a['name']).index(kate)

相关文章

  • pandas dataFrame使用积累

    用python做数据分析pandas库介绍之DataFrame基本操作一、查看数据(查看对象的方法对于Series...

  • 用python做数据分析3|pandas库介绍之两种数据结构Se

    今天是4.30号。 由于pandas部分内容很多,所以接下来会分多个部分进行学习。这一部分也是pandas学习的第...

  • pandas学习笔记

    Pandas库的介绍 Pandas是一个开放源码的Python库,它使用强大的数据结构提供高性能的数据操作和分析工...

  • Pandas

    PANDAS1.1 PANDAS介绍它是python数据分析方向的一个基石库,基于Numpy 来做数据分析(传统的...

  • Pandas

    Pandas 介绍 pandas是python的一个数据分析库,主要提供两种主要的资料结构,Series与Data...

  • python_pandas学习

    原文链接 pandas的数据结构介绍 简介 Pandas [1] 是python的一个数据分析包,最初由AQR ...

  • 1.基本介绍和文件读写

    Pandas介绍 Pandas是基于Numpy的专门用于数据分析的开源Python库。 Pandas没有使用Pyt...

  • pandas数据结构的Series

    用python做数据分析离不开pandas,它有两个非常重要的数据结构:Series,DataFrame 先学习S...

  • Python数据分析之pandas学习

    Python中的pandas模块进行数据分析。 接下来pandas介绍中将学习到如下8块内容: 1、数据结构简介:...

  • pandas简介

    pandas: Python数据分析库 pandas是一个专门用于数据分析的开源python库,是使用pytho...

网友评论

  • Jim0724:写的非常好,非常感谢

本文标题:用python做数据分析3|pandas库介绍之两种数据结构Se

本文链接:https://www.haomeiwen.com/subject/gpdhrttx.html