序
本文主要研究一下storm的AggregateProcessor的execute及finishBatch方法
实例
TridentTopology topology = new TridentTopology();
topology.newStream("spout1", spout)
.groupBy(new Fields("user"))
.aggregate(new Fields("user","score"),new UserCountAggregator(),new Fields("val"))
.toStream()
.parallelismHint(1)
.each(new Fields("val"),new PrintEachFunc(),new Fields());
TridentBoltExecutor
storm-core-1.2.2-sources.jar!/org/apache/storm/trident/topology/TridentBoltExecutor.java
private void checkFinish(TrackedBatch tracked, Tuple tuple, TupleType type) {
if(tracked.failed) {
failBatch(tracked);
_collector.fail(tuple);
return;
}
CoordCondition cond = tracked.condition;
boolean delayed = tracked.delayedAck==null &&
(cond.commitStream!=null && type==TupleType.COMMIT
|| cond.commitStream==null);
if(delayed) {
tracked.delayedAck = tuple;
}
boolean failed = false;
if(tracked.receivedCommit && tracked.reportedTasks == cond.expectedTaskReports) {
if(tracked.receivedTuples == tracked.expectedTupleCount) {
finishBatch(tracked, tuple);
} else {
//TODO: add logging that not all tuples were received
failBatch(tracked);
_collector.fail(tuple);
failed = true;
}
}
if(!delayed && !failed) {
_collector.ack(tuple);
}
}
private boolean finishBatch(TrackedBatch tracked, Tuple finishTuple) {
boolean success = true;
try {
_bolt.finishBatch(tracked.info);
String stream = COORD_STREAM(tracked.info.batchGroup);
for(Integer task: tracked.condition.targetTasks) {
_collector.emitDirect(task, stream, finishTuple, new Values(tracked.info.batchId, Utils.get(tracked.taskEmittedTuples, task, 0)));
}
if(tracked.delayedAck!=null) {
_collector.ack(tracked.delayedAck);
tracked.delayedAck = null;
}
} catch(FailedException e) {
failBatch(tracked, e);
success = false;
}
_batches.remove(tracked.info.batchId.getId());
return success;
}
public static class TrackedBatch {
int attemptId;
BatchInfo info;
CoordCondition condition;
int reportedTasks = 0;
int expectedTupleCount = 0;
int receivedTuples = 0;
Map<Integer, Integer> taskEmittedTuples = new HashMap<>();
//......
}
- 用户的spout以及groupBy操作最后都是被包装为TridentBoltExecutor,而groupBy的TridentBoltExecutor则是包装了SubtopologyBolt
- TridentBoltExecutor在checkFinish方法里头会调用finishBatch操作(
另外接收到REGULAR类型的tuple时,在tracked.condition.expectedTaskReports==0的时候也会调用finishBatch操作,对于spout来说tracked.condition.expectedTaskReports为0,因为它是数据源,所以不用接收COORD_STREAM更新expectedTaskReports以及expectedTupleCount
),而该操作会往COORD_STREAM这个stream发送new Values(tracked.info.batchId, Utils.get(tracked.taskEmittedTuples, task, 0)),也就是new Fields("id", "count"),即batchId以及发送给目的task的tuple数量,告知下游的它给task发送了多少tuple(taskEmittedTuples数据在CoordinatedOutputCollector的emit及emitDirect方法里头维护
) - 下游也是TridentBoltExecutor,它在接收到COORD_STREAM发来的数据时,更新expectedTupleCount,而每个TridentBoltExecutor在checkFinish方法里头会判断,如果receivedTuples等于expectedTupleCount则表示完整接收完上游发过来的tuple,然后触发finishBatch操作
SubtopologyBolt
storm-core-1.2.2-sources.jar!/org/apache/storm/trident/planner/SubtopologyBolt.java
public class SubtopologyBolt implements ITridentBatchBolt {
//......
@Override
public void execute(BatchInfo batchInfo, Tuple tuple) {
String sourceStream = tuple.getSourceStreamId();
InitialReceiver ir = _roots.get(sourceStream);
if(ir==null) {
throw new RuntimeException("Received unexpected tuple " + tuple.toString());
}
ir.receive((ProcessorContext) batchInfo.state, tuple);
}
@Override
public void finishBatch(BatchInfo batchInfo) {
for(TridentProcessor p: _myTopologicallyOrdered.get(batchInfo.batchGroup)) {
p.finishBatch((ProcessorContext) batchInfo.state);
}
}
@Override
public Object initBatchState(String batchGroup, Object batchId) {
ProcessorContext ret = new ProcessorContext(batchId, new Object[_nodes.size()]);
for(TridentProcessor p: _myTopologicallyOrdered.get(batchGroup)) {
p.startBatch(ret);
}
return ret;
}
@Override
public void cleanup() {
for(String bg: _myTopologicallyOrdered.keySet()) {
for(TridentProcessor p: _myTopologicallyOrdered.get(bg)) {
p.cleanup();
}
}
}
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
for(Node n: _nodes) {
declarer.declareStream(n.streamId, TridentUtils.fieldsConcat(new Fields("$batchId"), n.allOutputFields));
}
}
@Override
public Map<String, Object> getComponentConfiguration() {
return null;
}
protected static class InitialReceiver {
List<TridentProcessor> _receivers = new ArrayList<>();
RootFactory _factory;
ProjectionFactory _project;
String _stream;
public InitialReceiver(String stream, Fields allFields) {
// TODO: don't want to project for non-batch bolts...???
// how to distinguish "batch" streams from non-batch streams?
_stream = stream;
_factory = new RootFactory(allFields);
List<String> projected = new ArrayList<>(allFields.toList());
projected.remove(0);
_project = new ProjectionFactory(_factory, new Fields(projected));
}
public void receive(ProcessorContext context, Tuple tuple) {
TridentTuple t = _project.create(_factory.create(tuple));
for(TridentProcessor r: _receivers) {
r.execute(context, _stream, t);
}
}
public void addReceiver(TridentProcessor p) {
_receivers.add(p);
}
public Factory getOutputFactory() {
return _project;
}
}
}
- groupBy操作被包装为一个SubtopologyBolt,它的outputFields的第一个field为$batchId
- execute方法会获取对应的InitialReceiver,然后调用receive方法;InitialReceiver的receive方法调用_receivers的execute,这里的receive为AggregateProcessor
- finishBatch方法挨个调用_myTopologicallyOrdered.get(batchInfo.batchGroup)返回的TridentProcessor的finishBatch方法,这里就是AggregateProcessor及EachProcessor;BatchInfo,包含batchId、processorContext及batchGroup信息,这里将processorContext(
包含TransactionAttempt类型的batchId以及Object数组state,state里头包含GroupCollector、aggregate累加结果等
)传递给finishBatch方法
AggregateProcessor
storm-core-1.2.2-sources.jar!/org/apache/storm/trident/planner/processor/AggregateProcessor.java
public class AggregateProcessor implements TridentProcessor {
Aggregator _agg;
TridentContext _context;
FreshCollector _collector;
Fields _inputFields;
ProjectionFactory _projection;
public AggregateProcessor(Fields inputFields, Aggregator agg) {
_agg = agg;
_inputFields = inputFields;
}
@Override
public void prepare(Map conf, TopologyContext context, TridentContext tridentContext) {
List<Factory> parents = tridentContext.getParentTupleFactories();
if(parents.size()!=1) {
throw new RuntimeException("Aggregate operation can only have one parent");
}
_context = tridentContext;
_collector = new FreshCollector(tridentContext);
_projection = new ProjectionFactory(parents.get(0), _inputFields);
_agg.prepare(conf, new TridentOperationContext(context, _projection));
}
@Override
public void cleanup() {
_agg.cleanup();
}
@Override
public void startBatch(ProcessorContext processorContext) {
_collector.setContext(processorContext);
processorContext.state[_context.getStateIndex()] = _agg.init(processorContext.batchId, _collector);
}
@Override
public void execute(ProcessorContext processorContext, String streamId, TridentTuple tuple) {
_collector.setContext(processorContext);
_agg.aggregate(processorContext.state[_context.getStateIndex()], _projection.create(tuple), _collector);
}
@Override
public void finishBatch(ProcessorContext processorContext) {
_collector.setContext(processorContext);
_agg.complete(processorContext.state[_context.getStateIndex()], _collector);
}
@Override
public Factory getOutputFactory() {
return _collector.getOutputFactory();
}
}
- AggregateProcessor在prepare创建了FreshCollector以及ProjectionFactory
- 对于GroupBy操作来说,这里的_agg为GroupedAggregator,_agg.prepare传递的context为TridentOperationContext
- finishBatch方法这里调用_agg.complete方法,传入的arr数组,第一个元素为GroupCollector,第二元素为aggregator的累加值;传入的_collector为FreshCollector
GroupedAggregator
storm-core-1.2.2-sources.jar!/org/apache/storm/trident/operation/impl/GroupedAggregator.java
public class GroupedAggregator implements Aggregator<Object[]> {
ProjectionFactory _groupFactory;
ProjectionFactory _inputFactory;
Aggregator _agg;
ComboList.Factory _fact;
Fields _inFields;
Fields _groupFields;
public GroupedAggregator(Aggregator agg, Fields group, Fields input, int outSize) {
_groupFields = group;
_inFields = input;
_agg = agg;
int[] sizes = new int[2];
sizes[0] = _groupFields.size();
sizes[1] = outSize;
_fact = new ComboList.Factory(sizes);
}
@Override
public void prepare(Map conf, TridentOperationContext context) {
_inputFactory = context.makeProjectionFactory(_inFields);
_groupFactory = context.makeProjectionFactory(_groupFields);
_agg.prepare(conf, new TridentOperationContext(context, _inputFactory));
}
@Override
public Object[] init(Object batchId, TridentCollector collector) {
return new Object[] {new GroupCollector(collector, _fact), new HashMap(), batchId};
}
@Override
public void aggregate(Object[] arr, TridentTuple tuple, TridentCollector collector) {
GroupCollector groupColl = (GroupCollector) arr[0];
Map<List, Object> val = (Map) arr[1];
TridentTuple group = _groupFactory.create((TridentTupleView) tuple);
TridentTuple input = _inputFactory.create((TridentTupleView) tuple);
Object curr;
if(!val.containsKey(group)) {
curr = _agg.init(arr[2], groupColl);
val.put((List) group, curr);
} else {
curr = val.get(group);
}
groupColl.currGroup = group;
_agg.aggregate(curr, input, groupColl);
}
@Override
public void complete(Object[] arr, TridentCollector collector) {
Map<List, Object> val = (Map) arr[1];
GroupCollector groupColl = (GroupCollector) arr[0];
for(Entry<List, Object> e: val.entrySet()) {
groupColl.currGroup = e.getKey();
_agg.complete(e.getValue(), groupColl);
}
}
@Override
public void cleanup() {
_agg.cleanup();
}
}
- aggregate方法的arr[0]为GroupCollector;arr[1]为map,key为group字段的TridentTupleView,value为_agg的init返回值用于累加;arr[2]为TransactionAttempt
- _agg这里为ChainedAggregatorImpl,aggregate首先获取tuple的group字段以及输入的tuple,然后判断arr[1]是否有该group的值,没有就调用_agg的init初始化一个并添加到map
- aggregate方法最后调用_agg.aggregate进行累加
ChainedAggregatorImpl
storm-core-1.2.2-sources.jar!/org/apache/storm/trident/operation/impl/ChainedAggregatorImpl.java
public class ChainedAggregatorImpl implements Aggregator<ChainedResult> {
Aggregator[] _aggs;
ProjectionFactory[] _inputFactories;
ComboList.Factory _fact;
Fields[] _inputFields;
public ChainedAggregatorImpl(Aggregator[] aggs, Fields[] inputFields, ComboList.Factory fact) {
_aggs = aggs;
_inputFields = inputFields;
_fact = fact;
if(_aggs.length!=_inputFields.length) {
throw new IllegalArgumentException("Require input fields for each aggregator");
}
}
public void prepare(Map conf, TridentOperationContext context) {
_inputFactories = new ProjectionFactory[_inputFields.length];
for(int i=0; i<_inputFields.length; i++) {
_inputFactories[i] = context.makeProjectionFactory(_inputFields[i]);
_aggs[i].prepare(conf, new TridentOperationContext(context, _inputFactories[i]));
}
}
public ChainedResult init(Object batchId, TridentCollector collector) {
ChainedResult initted = new ChainedResult(collector, _aggs.length);
for(int i=0; i<_aggs.length; i++) {
initted.objs[i] = _aggs[i].init(batchId, initted.collectors[i]);
}
return initted;
}
public void aggregate(ChainedResult val, TridentTuple tuple, TridentCollector collector) {
val.setFollowThroughCollector(collector);
for(int i=0; i<_aggs.length; i++) {
TridentTuple projected = _inputFactories[i].create((TridentTupleView) tuple);
_aggs[i].aggregate(val.objs[i], projected, val.collectors[i]);
}
}
public void complete(ChainedResult val, TridentCollector collector) {
val.setFollowThroughCollector(collector);
for(int i=0; i<_aggs.length; i++) {
_aggs[i].complete(val.objs[i], val.collectors[i]);
}
if(_aggs.length > 1) { // otherwise, tuples were emitted directly
int[] indices = new int[val.collectors.length];
for(int i=0; i<indices.length; i++) {
indices[i] = 0;
}
boolean keepGoing = true;
//emit cross-join of all emitted tuples
while(keepGoing) {
List[] combined = new List[_aggs.length];
for(int i=0; i< _aggs.length; i++) {
CaptureCollector capturer = (CaptureCollector) val.collectors[i];
combined[i] = capturer.captured.get(indices[i]);
}
collector.emit(_fact.create(combined));
keepGoing = increment(val.collectors, indices, indices.length - 1);
}
}
}
//return false if can't increment anymore
private boolean increment(TridentCollector[] lengths, int[] indices, int j) {
if(j==-1) return false;
indices[j]++;
CaptureCollector capturer = (CaptureCollector) lengths[j];
if(indices[j] >= capturer.captured.size()) {
indices[j] = 0;
return increment(lengths, indices, j-1);
}
return true;
}
public void cleanup() {
for(Aggregator a: _aggs) {
a.cleanup();
}
}
}
- init方法返回的是ChainedResult,它的objs字段存放每个_aggs对应的init结果
- 这里的_agg如果是Aggregator类型,则为用户在groupBy之后aggregate方法传入的aggregator;如果是CombinerAggregator类型,它会被CombinerAggregatorCombineImpl包装一下
- ChainedAggregatorImpl的complete方法,_aggs挨个调用complete,传入的第一个参数为val.objs[i],即每个_agg对应的累加值
小结
- groupBy被包装为一个SubtopologyBolt,它的execute方法会触发InitialReceiver的receive方法,而receive方法会触发_receivers的execute方法,第一个_receivers为AggregateProcessor
- AggregateProcessor包装了GroupedAggregator,而GroupedAggregator包装了ChainedAggregatorImpl,而ChainedAggregatorImpl包装了Aggregator数组,本实例只有一个,即在groupBy之后aggregate方法传入的aggregator
- TridentBoltExecutor会从coordinator那里接收COORD_STREAM_PREFIX发送过来的应该接收到的tuple的count,然后更新expectedTupleCount,然后进行checkFinish判断,当receivedTuples(
每次接收到spout的batch的一个tuple就更新该值
)等于expectedTupleCount的时候,会触发finishBatch操作,该操作会调用SubtopologyBolt.finishBatch,进而调用AggregateProcessor.finishBatch,进而调用GroupedAggregator.complete,进而调用ChainedAggregatorImpl.complete,进而调用用户的aggregator的complete - 对于包装了TridentSpoutExecutor的TridentBoltExecutor来说,它的tracked.condition.expectedTaskReports为0,因为它是数据源,所以不用接收COORD_STREAM更新expectedTaskReports以及expectedTupleCount;当它在execute方法接收到MasterBatchCoordinator的MasterBatchCoordinator.BATCH_STREAM_ID(
$batch
)发来的tuple的时候,调用TridentSpoutExecutor的execute方法,之后就由于tracked.condition.expectedTaskReports==0(本实例两个TridentBoltExecutor的TrackedBatch的condition.commitStream为null,因而receivedCommit为true
),就立即调用finishBatch(里头会调用TridentSpoutExecutor的finishBatch方法,之后通过COORD_STREAM给下游TridentBoltExecutor的task发送batchId及taskEmittedTuples数量;而对于下游TridentBoltExecutor它的expectedTaskReports不为0,则需要在收到COORD_STREAM的tuple的时候才能checkFinish,判断是否可以finishBatch
) - TridentSpoutExecutor的execute会调用emitter(
最后调用用户的spout
)发射一个batch;而finishBatch方法目前为空,没有做任何操作;也就是说对于包装了TridentSpoutExecutor的TridentBoltExecutor来说,它接收到发射一个batch的指令之后,调用完TridentSpoutExecutor.execute通过emitter发射一个batch,就立马执行finishBatch操作(发射[id,count]给下游的TridentBoltExecutor,下游TridentBoltExecutor在接收到[id,count]数据时更新expectedTupleCount,然后进行checkFinish判断,如果receivedTuples等于expectedTupleCount,就触发finishBatch操作,进而触发AggregateProcessor的finishBatch操作
)
网友评论