作者: 低吟浅唱1990 | 来源:发表于2019-01-20 18:58 被阅读10次

一、基本概念

图是由一组顶点和一组能够将两个顶点相连的边组成的

  • 度数表示某个顶点边的总数
  • 路径是由边顺序连接的一系列顶点。
  • 简单路径是一条没有重复顶点的路径
  • 环是一条至少含有一条边且起点和终点相同的路径。
  • 简单环是一条不含有重复顶点和边的环。

二、图的几种表示方法

  • 邻接矩阵
    我们可以使用一个V乘V的布尔矩阵。当顶点v和顶点w之间有相连接的边时,定义v行和w列的额元素值为true,否则为false。
image.png
  • 邻接表
    使用一个以顶点为索引的列表数组,其中的每个元素都是和该顶点相邻的顶点列表。
image.png

下面采用 邻接表来执行相关操作


public class Graph {

    private static final String NEWLINE = System.getProperty("line.separator");

    private  int V;
    private  int E;
    private Bag<Integer>[] adj;  //邻接表数组 一个Bag对象一个链表

    public Graph(int V) {
        if (V<0)throw new IllegalArgumentException("Numbers of V must be > 0");
        this.V = V;
        this.E = 0;
        this.adj = (Bag<Integer>[]) new Bag[V];
        for (int v = 0;v<V;v++){
            adj[v] = new Bag<>();
        }
    }

    public Graph(In in){  //输入输出流
        this(in.readInt());
        try {
            int E = in.readInt();
            if (E<0)throw new IllegalArgumentException("number of edges in a Grapha must be >0");
            for (int i = 0; i < E; i++) {
                int v = in.readInt();
                int w = in.readInt();
                System.out.println(v+"-->"+w);
                addEdge(v,w);
            }
        }catch (NoSuchElementException e){

        }
    }

    public int V(){
        return V;
    }

    public int E(){
        return E;
    }

    private void validateVertex(int v) {
        if (v < 0 || v >= V)
            throw new IllegalArgumentException("vertex " + v + " is not between 0 and " + (V-1));
    }

    public void addEdge(int v,int w){
        validateVertex(v);
        validateVertex(w);
        E++;
        ((Bag<Integer>)adj[v]).add(w);
        ((Bag<Integer>)adj[w]).add(v);
    }

    public Iterable<Integer>adj(int v){
        validateVertex(v);
        return adj[v];
    }

    public int degree(int v){
        validateVertex(v);
        return adj[v].size();
    }

    public String toString() {
        StringBuilder s = new StringBuilder();
        s.append(V + " vertices, " + E + " edges " + NEWLINE);
        for (int v = 0; v < V; v++) {
            s.append(v + ": ");
            for (int w : adj[v]) {
                s.append(w + " ");
            }
            s.append(NEWLINE);
        }
        return s.toString();
    }
}


Graph graph = new Graph(4);
graph.addEdge(0,1);
graph.addEdge(0,2);
graph.addEdge(0,3);
graph.addEdge(2,1);
graph.addEdge(2,3);
System.out.println(graph.toString());
>>>
4 vertices, 5 edges 
0: 3 2 1 
1: 2 0 
2: 3 1 0 
3: 2 0 

三、深度优先搜索

image.png

首先我们从顶点A开始,坐上表示走过的记号后,面前有两条路,通向B和F,在领接表中规定选在最前面的顶点B点(或者使用向右),走到B点发现有三个路通向C,I和G。根据规则选择C点,.... 知道走到F点。在F点的时候,根据规则会选择A点,但是A点已经被标记了。所以回退,在选择G点。

public class DepthFirstSearch {

    private boolean[] marked;
    private int count;
    public DepthFirstSearch(Graph G,int s){
        marked = new boolean[G.V()];
        dfs(G,s);
    }
    private void dfs(Graph G,int v){
        count++;
        marked[v] = true;
        System.out.println("marked: "+v);
        for (int w : G.adj(v)) {
            if (!marked[w]){
                dfs(G,w);
            }
        }
    }
    public boolean marked(int v){
        return marked[v];
    }
    public int getCount(){
        return count;
    }
}
//
DepthFirstSearch search = new DepthFirstSearch(graph, 2);
for (int v = 0; v < graph.V(); v++) {
    if (search.marked(v)){
             System.out.print(v + " ");
       }
}

marked: 2
marked: 3
marked: 0
marked: 1
0 1 2 3             

四、广度优先搜索


public class BreadthFirstPaths {

    private static final int INFINITY = Integer.MAX_VALUE;
    private boolean[] marked;
    private int[] edgeTo;
    private int[] distTo;
    public BreadthFirstPaths(Graph graph,int s){
        marked = new boolean[graph.V()];
        distTo = new int[graph.V()];
        edgeTo = new int[graph.V()];

        bfs(graph,s);
    }
    private void bfs(Graph graph,int s){
        Queue<Integer> q = new Queue<>();
        for (int i = 0; i < graph.V(); i++) {
            distTo[i] = INFINITY;
        }
        distTo[s] = 0;
        marked[s] = true;   // 0 被标记
        q.enqueue(s);
        while (!q.isEmpty()){    // 队列中就是上一个顶点里没有被标记的顶点
            int v = q.dequeue();

            for (int w : graph.adj(v)) { //遍历某个顶点的一条邻接表上的元素 把没有标记的放入队列中
                if (!marked[w]){
                    edgeTo[w] = v;
                    distTo[w] = distTo[v]+1;
                    marked[w] = true;      // 第一遍 2 1 5 被标记
                    System.out.println(w);
                    q.enqueue(w);
                }
            }
        }

    }
    public boolean hasPathTo(int v){
        return marked[v];
    }
    public int distTo(int v){
        return distTo[v];
    }
    public Iterable<Integer>pathTo(int v){
        if (!hasPathTo(v)) return null;
        Stack<Integer>path = new Stack<>();
        int x;
        for (x = v;distTo[x]!=0;x=edgeTo[x]){
            path.push(x);
        }
        path.push(x);
        System.out.println(path.toString());
        return path;
    }
}
Queue 和Stack前文中的队列和栈

BreadthFirstPaths bfs = new BreadthFirstPaths(graph,0);
for (int v = 0; v < graph.V(); v++) {
    if (bfs.hasPathTo(v)) {
        System.out.printf("%d to %d (%d):  ", 0, v, bfs.distTo(v));
        for (int x : bfs.pathTo(v)) {
            if (x == 0) System.out.print(x);
            else       System.out.print("-" + x);
        }
        System.out.println();
    }else {
        System.out.printf("%d to %d (-):  not connected\n", 0, v);
    }
}
//构建图
6 vertices, 8 edges 
0: 2 1 5 
1: 0 2 
2: 0 1 3 4 
3: 2 4 5 
4: 2 3 
5: 0 3 
//遍历图
0
2
1
5
3
4
//输出保存的路径
0 to 0 (0):  0 
0
0 to 1 (1):  0 1 
0-1
0 to 2 (1):  0 2 
0-2
0 to 3 (2):  0 2 3 
0-2-3
0 to 4 (2):  0 2 4 
0-2-4
0 to 5 (1):  0 5 
0-5

最小生成树

最短路径

相关文章

网友评论

      本文标题:

      本文链接:https://www.haomeiwen.com/subject/gtyxjqtx.html