先求出触摸点E到起点A和倒数第二个点D的那条线(最后画的那条直线)的距离,然后依次求出E点到AB、BC、CD边的距离,并依次进行比较

private int ensurePoint(float startX, float startY) {
//形成的多边形要首尾相接
int position = -1;
double minL = DrawUtils.pointToLine(startX, startY, list.get(list.size() - 1), list.get(0));
for (int i = 0; i < list.size() - 1; i++) {
double l1 = DrawUtils.pointToLine(startX, startY, list.get(i), list.get(i + 1));
if (minL < l1) {
} else if (minL > l1) {
position = i;
minL = l1;
}
}
if (minL <= 40) {
return position;//根据position获取要移动线的 端点
} else if (DrawUtils.PtInRegion(new Point(startX, startY), list) == 1 && minL > 40) {
return -2;//表示点击点在多边形内,执行移动view
} else {
return -3;//表示点击点在多边形外,不执行任何操作
}
}
点到直线的距离
// 点到直线的距离 : 点(x0,y0) 到由两点组成的线段(x1,y1) ,( x2,y2 )
public static double pointToLine(float x0, float y0, Point point1, Point point2) {
float x1 = point1.getX();
float y1 = point1.getY();
float x2 = point2.getX();
float y2 = point2.getY();
double space = 0;
double a, b, c;
a = lineSpace(x1, y1, x2, y2);// 线段的长度
b = lineSpace(x1, y1, x0, y0);// (x1,y1)到点的距离
c = lineSpace(x2, y2, x0, y0);// (x2,y2)到点的距离
if (c <= 0.000001 || b <= 0.000001) {
space = 0;
return space;
}
if (a <= 0.000001) {
space = b;
return space;
}
if (c * c >= a * a + b * b) {
space = b;
return space;
}
if (b * b >= a * a + c * c) {
space = c;
return space;
}
double p = (a + b + c) / 2;// 半周长
double s = Math.sqrt(p * (p - a) * (p - b) * (p - c));// 海伦公式求面积
space = 2 * s / a;// 返回点到线的距离(利用三角形面积公式求高)
return space;
}
网友评论