美文网首页opencv 入门图像处理OpenCvOpenCV with Python By Example
计算机视觉实战(十二)全景图像拼接(附完整代码)

计算机视觉实战(十二)全景图像拼接(附完整代码)

作者: 小小何先生 | 来源:发表于2020-01-12 09:01 被阅读0次

      我们可以通过求取上一张中的特征点匹配的方法,将多个图片拼接在一起。简单来说就是将这张图片做一个变换到另外一个图片上面去,中间就是一个变换矩阵。

      随机抽样一致算法(Random sample consensus,RANSAC)

    image

      由于局外点、异常点的干扰,最小二乘拟合的效果容易走偏,而随机抽样一致算法,数据点更不容易走偏,拟合的效果更好。

      选择初始样本点进行拟合,给定一个容忍范围,不断进行迭代

    image

      随机算两个点,看落在区间内的点有多少个,越多越好。

      每一次拟合后,容差范围内都有对应的数据点数,找出数据点个数最多的情况,就是最终的拟合结果:

    image

      单应性矩阵

    image

    全景图像拼接流程:

    1. 提取图像特征

    2. 对两张图片提取的特征点求变换矩阵。

    3. 变换

    import numpy as np
    import cv2
    
    class Stitcher:
    
        #拼接函数
        def stitch(self, images, ratio=0.75, reprojThresh=4.0,showMatches=False):
            #获取输入图片
            (imageB, imageA) = images
            #检测A、B图片的SIFT关键特征点,并计算特征描述子
            (kpsA, featuresA) = self.detectAndDescribe(imageA)
            (kpsB, featuresB) = self.detectAndDescribe(imageB)
    
            # 匹配两张图片的所有特征点,返回匹配结果
            M = self.matchKeypoints(kpsA, kpsB, featuresA, featuresB, ratio, reprojThresh)
    
            # 如果返回结果为空,没有匹配成功的特征点,退出算法
            if M is None:
                return None
    
            # 否则,提取匹配结果
            # H是3x3视角变换矩阵      
            (matches, H, status) = M
            # 将图片A进行视角变换,result是变换后图片
            result = cv2.warpPerspective(imageA, H, (imageA.shape[1] + imageB.shape[1], imageA.shape[0]))
            self.cv_show('result', result)
            # 将图片B传入result图片最左端
            result[0:imageB.shape[0], 0:imageB.shape[1]] = imageB
            self.cv_show('result', result)
            # 检测是否需要显示图片匹配
            if showMatches:
                # 生成匹配图片
                vis = self.drawMatches(imageA, imageB, kpsA, kpsB, matches, status)
                # 返回结果
                return (result, vis)
    
            # 返回匹配结果
            return result
        def cv_show(self,name,img):
            cv2.imshow(name, img)
            cv2.waitKey(0)
            cv2.destroyAllWindows()
    
        def detectAndDescribe(self, image):
            # 将彩色图片转换成灰度图
            gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    
            # 建立SIFT生成器
            descriptor = cv2.xfeatures2d.SIFT_create()
            # 检测SIFT特征点,并计算描述子
            (kps, features) = descriptor.detectAndCompute(image, None)
    
            # 将结果转换成NumPy数组
            kps = np.float32([kp.pt for kp in kps])
    
            # 返回特征点集,及对应的描述特征
            return (kps, features)
    
        def matchKeypoints(self, kpsA, kpsB, featuresA, featuresB, ratio, reprojThresh):
            # 建立暴力匹配器
            matcher = cv2.BFMatcher()
       
            # 使用KNN检测来自A、B图的SIFT特征匹配对,K=2
            rawMatches = matcher.knnMatch(featuresA, featuresB, 2)
    
            matches = []
            for m in rawMatches:
                # 当最近距离跟次近距离的比值小于ratio值时,保留此匹配对
                if len(m) == 2 and m[0].distance < m[1].distance * ratio:
                # 存储两个点在featuresA, featuresB中的索引值
                    matches.append((m[0].trainIdx, m[0].queryIdx))
    
            # 当筛选后的匹配对大于4时,计算视角变换矩阵
            if len(matches) > 4:
                # 获取匹配对的点坐标
                ptsA = np.float32([kpsA[i] for (_, i) in matches])
                ptsB = np.float32([kpsB[i] for (i, _) in matches])
    
                # 计算视角变换矩阵
                (H, status) = cv2.findHomography(ptsA, ptsB, cv2.RANSAC, reprojThresh)
    
                # 返回结果
                return (matches, H, status)
    
            # 如果匹配对小于4时,返回None
            return None
    
        def drawMatches(self, imageA, imageB, kpsA, kpsB, matches, status):
            # 初始化可视化图片,将A、B图左右连接到一起
            (hA, wA) = imageA.shape[:2]
            (hB, wB) = imageB.shape[:2]
            vis = np.zeros((max(hA, hB), wA + wB, 3), dtype="uint8")
            vis[0:hA, 0:wA] = imageA
            vis[0:hB, wA:] = imageB
    
            # 联合遍历,画出匹配对
            for ((trainIdx, queryIdx), s) in zip(matches, status):
                # 当点对匹配成功时,画到可视化图上
                if s == 1:
                    # 画出匹配对
                    ptA = (int(kpsA[queryIdx][0]), int(kpsA[queryIdx][1]))
                    ptB = (int(kpsB[trainIdx][0]) + wA, int(kpsB[trainIdx][1]))
                    cv2.line(vis, ptA, ptB, (0, 255, 0), 1)
    
            # 返回可视化结果
            return vis
    
    图像A和B
    from Stitcher import Stitcher
    import cv2
    
    # 读取拼接图片
    imageA = cv2.imread("left_01.png")
    imageB = cv2.imread("right_01.png")
    
    # 把图片拼接成全景图
    stitcher = Stitcher()
    (result, vis) = stitcher.stitch([imageA, imageB], showMatches=True)
    
    # 显示所有图片
    cv2.imshow("Image A", imageA)
    cv2.imshow("Image B", imageB)
    cv2.imshow("Keypoint Matches", vis)
    cv2.imshow("Result", result)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    
    关键点 拼接后的结果

    完整代码 后台回复:全景图像拼接

    我的微信公众号名称:深度学习与先进智能决策
    微信公众号ID:MultiAgent1024
    公众号介绍:主要研究分享深度学习、机器博弈、强化学习等相关内容!期待您的关注,欢迎一起学习交流进步!

    相关文章

      网友评论

        本文标题:计算机视觉实战(十二)全景图像拼接(附完整代码)

        本文链接:https://www.haomeiwen.com/subject/gwjiactx.html