blink udtf的实战

作者: 岳过山丘 | 来源:发表于2019-02-13 15:15 被阅读5次

    实时计算支持三种自定义函数(UDX),分别是:

    UDF(User Defined Function)自定义标量函数,输入一条记录的0个、1个或者多个值,返回一个值。
    UDAF(User Defined Aggregation Function)自定义聚合函数,将多条记录聚合成一条值。
    UDTF(User Defined Table Function)自定义表值函数,能将多条记录转换后再输出,输出记录的个数和输入记录数不需要一一对应,也是唯一能返回多个字段的自定义函数。
    

    本文档通过使用UDTF解析字节数组成多个字段
    如存储的是{"name":"Alice", "age":13, "grade":"A"}的字节数组,通过UDTF 变成三列name,age,grade 值分别为 Alice,13,A

    1 UDTF

    
    import com.alibaba.fastjson.JSON;
    import com.alibaba.fastjson.JSONObject;
    import org.apache.flink.api.common.typeinfo.BasicTypeInfo;
    import org.apache.flink.api.common.typeinfo.TypeInformation;
    import org.apache.flink.api.java.typeutils.RowTypeInfo;
    import org.apache.flink.shaded.calcite.com.google.common.collect.Lists;
    import org.apache.flink.table.api.functions.TableFunction;
    import org.apache.flink.table.api.types.DataType;
    import org.apache.flink.table.api.types.TypeInfoWrappedDataType;
    import org.apache.flink.types.Row;
    
    import java.nio.charset.Charset;
    import java.util.List;
    
    public class kafkaUDTF extends TableFunction<Row> {
    
        public kafkaUDTF() {
    
        }
    
        private List<Class> clazzes = Lists.newArrayList();
        private List<String> fieldName = Lists.newArrayList();
    
        public kafkaUDTF(String... args) {
            for (String arg : args) {
                if (arg.contains(",")) {
    //将 "VARCHAR" 转换为 String.class, "INTEGER" 转为 Integer.class等
                    clazzes.add(ClassUtil.stringConvertClass(arg.split(",")[1]));
                    fieldName.add(arg.split(",")[0]);
                }
            }
        }
        public static void main(String[] args) {
            kafkaUDTF kafkaUDTF = new kafkaUDTF("name,VARCHAR", "age,INTEGER", "grade,VARCHAR");
            kafkaUDTF.eval("{\"name\":\"Alice\", \"age\":13,  \"grade\":\"A\"}".getBytes());
        }
    
        public void eval(byte[] message) {
            String mess = new String(message, Charset.forName("UTF-8"));
            JSONObject json = JSON.parseObject(mess);
            Row row = new Row(fieldName.size());
            for (int i = 0; i < fieldName.size(); i++) {
                row.setField(i, json.get(fieldName.get(i)));
            }
            collect(row);
        }
    
        @Override
        // 如果返回值是Row,就必须重载实现这个方法,显式地告诉系统返回的字段类型
        public DataType getResultType(Object[] arguments, Class[] argTypes) {
            TypeInformation[] typeInformations = new TypeInformation[clazzes.size()];
    
            for (int i = 0; i < clazzes.size(); i++) {
                typeInformations[i] = BasicTypeInfo.of(clazzes.get(i));
            }
            RowTypeInfo rowType = new RowTypeInfo(typeInformations);
            return new TypeInfoWrappedDataType(rowType);
        }
    
    }
    

    2. Main

     StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
    StreamTableEnvironment tableEnv = TableEnvironment.getTableEnvironment(env);
      DataStreamSource<byte[]> byteSource = env.fromElements("{\"name\":\"Alice\", \"age\":13,  \"grade\":\"A\"}".getBytes());
            Table byteSourceTable = tableEnv.fromDataStream(byteSource, "message");
    
            tableEnv.registerTable("b", byteSourceTable);
            tableEnv.registerFunction("kafkaUDTF", new kafkaUDTF("name,VARCHAR", "age,INTEGER", "grade,VARCHAR"));
    
            Table res1 = tableEnv.sqlQuery("select  T.name, T.age, T.grade\n" +
                    "from b as S\n" +
                    "LEFT JOIN LATERAL TABLE(kafkaUDTF(message)) as T(name, age, grade) ON TRUE");
            res1.writeToSink(new PrintTableSink(TimeZone.getDefault()));
            tableEnv.execute();
    
    //打印结果为 task-1> (+)Alice,13,A
    

    3. 依赖

     <dependency>
                <groupId>com.alibaba.blink</groupId>
                <artifactId>flink-core</artifactId>
                <version>1.5.1</version>
                <type>pom</type>
            </dependency>
            <dependency>
                <groupId>com.alibaba.blink</groupId>
                <artifactId>flink-streaming-java_2.11</artifactId>
                <version>1.5.1</version>
            </dependency>
            <dependency>
                <groupId>com.alibaba.blink</groupId>
                <artifactId>flink-streaming-scala_2.11</artifactId>
                <version>1.5.1</version>
            </dependency>
            <dependency>
                <groupId>com.alibaba.blink</groupId>
                <artifactId>flink-table_2.11</artifactId>
                <version>1.5.1</version>
            </dependency>
    <dependency>
                <groupId>com.alibaba</groupId>
                <artifactId>fastjson</artifactId>
                <version>1.2.9</version>
            </dependency>
    

    4.扩展性

    由于blink 的kafka source只支持字节数组,可通过这个UDTF从字节数组解析出想要的字段。

    相关文章

      网友评论

        本文标题:blink udtf的实战

        本文链接:https://www.haomeiwen.com/subject/gwkdeqtx.html