美文网首页算法与数据结构随笔-生活工作点滴
算法与数据结构系列之[平衡二叉树-AVL树-下]

算法与数据结构系列之[平衡二叉树-AVL树-下]

作者: 秦老厮 | 来源:发表于2019-07-10 15:09 被阅读0次

    上篇介绍了AVL树的概述,这篇把AVL树的java代码实现贴出来

    public class AVLTree<K extends Comparable<K>, V> {
    
       private class Node{
           public K key;
           public V value;
           public Node left, right;
           public int height; //树的高度
    
           public Node(K key, V value){
               this.key = key;
               this.value = value;
               left = null;
               right = null;
               height = 1;
           }
       }
    
       private Node root;  //根节点
       private int size;  //元素个数
    
       public AVLTree(){
           root = null;
           size = 0;
       }
       
        //获取元素个数
       public int getSize(){
           return size;
       }
       
           //判断AVL树是否为空
       public boolean isEmpty(){
           return size == 0;
       }
    
       //获取节点的高度
       private int getHeight(Node node){
           if(node == null)
               return 0;
           return node.height;
       }
    
       //获得节点的平衡因子
       private int getBalanceFactor(Node node){
           if(node == null)
               return 0;
           return getHeight(node.left) - getHeight(node.right);
       }
    
       //判断是否是二分搜索树
       private boolean isBST(){
           ArrayList<K> keys = new ArrayList<>();
           inOrder(root,keys);
           for (int i = 1; i < keys.size(); i++) {
               if(keys.get(i-1).compareTo(keys.get(i)) > 0)
                   return false;
           }
           return true;
       }
       
        //中序遍历
       public void inOrder(Node node, ArrayList<K> keys){
           if(node == null)
               return;
           inOrder(node.left,keys);
           keys.add(node.key);
           inOrder(node.right,keys);
       }
    
       //判断二叉树是否是一棵平衡二叉树
       public boolean isBalanced(){
           return isBalanced(root);
       }
    
       private boolean isBalanced(Node node){
           if(node == null)
               return true;
           int balanceFactor = getBalanceFactor(node);
           if(Math.abs(balanceFactor) >1)
               return false;
           return isBalanced(node.left)&&isBalanced(node.right);
       }
    
       //右旋转
       private Node rightRotate(Node y){
           Node x = y.left;
           Node T3 = x.right;
           //向右旋转
           x.right = y;
           y.left = T3;
           //更新height值,旋转后只有x和y的高度值发生变化
           y.height = Math.max(getHeight(y.left),getHeight(y.right)) + 1;
           x.height = Math.max(getHeight(x.left),getHeight(x.right)) + 1;
           return x;
       }
    
       //左旋转
       private Node leftRotate(Node y){
           Node x = y.right;
           Node T3 = x.left;
           //向左旋转
           x.left = y;
           y.right = T3;
           //更新height值,旋转后只有x和y的高度值发生变化
           y.height = Math.max(getHeight(y.left),getHeight(y.right)) + 1;
           x.height = Math.max(getHeight(x.left),getHeight(x.right)) + 1;
           return x;
       }
    
       // 向AVL树添加新的元素(key, value)
       public void add(K key, V value){
           root = add(root, key, value);
       }
    
       // 向以node为根的AVL树中插入元素(key, value),递归算法
       // 返回插入新节点后AVL树的根
       private Node add(Node node, K key, V value){
    
           if(node == null){
               size ++;
               return new Node(key, value);
           }
    
           if(key.compareTo(node.key) < 0)
               node.left = add(node.left, key, value);
           else if(key.compareTo(node.key) > 0)
               node.right = add(node.right, key, value);
           else // key.compareTo(node.key) == 0
               node.value = value;
           //更新height
           node.height = 1 + Math.max(getHeight(node.left),getHeight(node.right));
           //计算平衡因子
           int balanceFactor = getBalanceFactor(node);
           //平衡维护
           //LL
           if(balanceFactor > 1 && getBalanceFactor(node.left) >= 0)
               rightRotate(node);
           //RR
           if(balanceFactor < -1 && getBalanceFactor(node.right) <= 0)
               return leftRotate(node);
           //LR
           if(balanceFactor > 1 && getBalanceFactor(node.left) < 0){
               node.left = leftRotate(node.left);
               return rightRotate(node);
           }
           //RL
           if(balanceFactor < -1 && getBalanceFactor(node.right) > 0){
               node.right = rightRotate(node.right);
               return leftRotate(node);
           }
           return node;
       }
    
       // 返回以node为根节点的AVL树中,key所在的节点
       private Node getNode(Node node, K key){
    
           if(node == null)
               return null;
    
           if(key.equals(node.key))
               return node;
           else if(key.compareTo(node.key) < 0)
               return getNode(node.left, key);
           else // if(key.compareTo(node.key) > 0)
               return getNode(node.right, key);
       }
       
        //判断AVL树中是否包含key
       public boolean contains(K key){
           return getNode(root, key) != null;
       }
       
        //获取AVL树中键为key的value值
       public V get(K key){
    
           Node node = getNode(root, key);
           return node == null ? null : node.value;
       }
       
           //将AVL树中键为key的value值设置成新的newValue值
       public void set(K key, V newValue){
           Node node = getNode(root, key);
           if(node == null)
               throw new IllegalArgumentException(key + " doesn't exist!");
    
           node.value = newValue;
       }
    
       // 返回以node为根的AVL树的最小值所在的节点
       private Node minimum(Node node){
           if(node.left == null)
               return node;
           return minimum(node.left);
       }
    
       // 从AVL树中删除键为key的节点
    
       public V remove(K key){
    
           Node node = getNode(root, key);
           if(node != null){
               root = remove(root, key);
               return node.value;
           }
           return null;
       }
    
       private Node remove(Node node, K key){
    
           if( node == null )
               return null;
           Node retNode; //要返回的node节点,
           if( key.compareTo(node.key) < 0 ){
               node.left = remove(node.left , key);
               retNode = node;
           }
           else if(key.compareTo(node.key) > 0 ){
               node.right = remove(node.right, key);
               retNode = node;
           }
           else{   // key.compareTo(node.key) == 0
    
               // 待删除节点左子树为空的情况
               if(node.left == null){
                   Node rightNode = node.right;
                   node.right = null;
                   size --;
                   retNode = node;
               }
    
               // 待删除节点右子树为空的情况
               else if(node.right == null){
                   Node leftNode = node.left;
                   node.left = null;
                   size --;
                   retNode = node;
               }
               // 待删除节点左右子树均不为空的情况
               // 找到比待删除节点大的最小节点, 即待删除节点右子树的最小节点
               // 用这个节点顶替待删除节点的位置
               else {
                   Node successor = minimum(node.right);
                   successor.right = remove(node.right, successor.key);
                   successor.left = node.left;
    
                   node.left = node.right = null;
    
                   retNode = node;
               }
           }
           if(retNode == null)
               return null;
           //更新height
           retNode.height = 1 + Math.max(getHeight(retNode.left),getHeight(retNode.right));
           //计算平衡因子
           int balanceFactor = getBalanceFactor(retNode);
           //平衡维护
           //LL
           if(balanceFactor > 1 && getBalanceFactor(retNode.left) >= 0)
               rightRotate(retNode);
           //RR
           if(balanceFactor < -1 && getBalanceFactor(retNode.right) <= 0)
               return leftRotate(retNode);
           //LR
           if(balanceFactor > 1 && getBalanceFactor(retNode.left) < 0){
               retNode.left = leftRotate(retNode.left);
               return rightRotate(retNode);
           }
           //RL
           if(balanceFactor < -1 && getBalanceFactor(retNode.right) > 0){
               retNode.right = rightRotate(retNode.right);
               return leftRotate(retNode);
           }
           return retNode;
       }
    
       public static void main(String[] args) {
           int[] arr = {12,8,18,5,11,17,4};
           AVLTree avlTree = new AVLTree();
           for (int i = 0; i < arr.length; i++) {
               avlTree.add(arr[i],arr[i]);
           }
           System.out.println("AVLTree is balanced: " + avlTree.isBalanced());
    
           avlTree.add(2,2);
           avlTree.add(7,7);
           System.out.println("AVLTree is balanced: " + avlTree.isBalanced());
    
           avlTree.remove(18);
           System.out.println("AVLTree is balanced: " + avlTree.isBalanced());
       }
    }
    
    本人微信公众号,点关注,不迷路

    相关文章

      网友评论

        本文标题:算法与数据结构系列之[平衡二叉树-AVL树-下]

        本文链接:https://www.haomeiwen.com/subject/gwuckctx.html