美文网首页工作生活
(四) trainning a classifier

(四) trainning a classifier

作者: 狼无雨雪 | 来源:发表于2019-07-04 18:58 被阅读0次
### import torch and some packages, and downloading CIFAR10 dataset
import torch
import torchvision
import torchvision.transforms as transforms



transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])



trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                       download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
                                        shuffle=True, num_workers=2)


testset = torchvision.datasets.CIFAR10(root="./data", train=False,
                                      download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
                                        shuffle=False, num_workers=2)


classes = ('plane', 'car', 'bird', 'cat', 
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
Files already downloaded and verified
Files already downloaded and verified
testset = torchvision.datasets.CIFAR10(root="./data", train=False,
                                      download=True, transform=transform)

Files already downloaded and verified
transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
                                          shuffle=True, num_workers=2)

testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
                                         shuffle=False, num_workers=2)

classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
Files already downloaded and verified
Files already downloaded and verified
import matplotlib.pyplot as plt
import numpy as np

# functions to show an image


def imshow(img):
    img = img / 2 + 0.5     # unnormalize
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))
    plt.show()


# get some random training images
dataiter = iter(trainloader)
images, labels = dataiter.next()

# show images
imshow(torchvision.utils.make_grid(images))
# print labels
print(' '.join('%5s' % classes[labels[j]] for j in range(4)))
<Figure size 640x480 with 1 Axes>


horse  bird  ship   cat
### show some images
import matplotlib.pyplot as plt
import numpy as np

def imshow(img):
    img = img/2 + 0.5
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1,2,0)))
    plt.show()

dataiter = iter(trainloader)
images, labels = dataiter.next()

imshow(torchvision.utils.make_grid(images))
print(' '.join('%5s' % classes[labels]) for j in range(4))
<generator object <genexpr> at 0x7f6d8dacde08>
### define a Convolutional Neural Network
import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16*5*5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
    
    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16*5*5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
net = Net()
print(net)
Net(
  (conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))
  (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
  (fc1): Linear(in_features=400, out_features=120, bias=True)
  (fc2): Linear(in_features=120, out_features=84, bias=True)
  (fc3): Linear(in_features=84, out_features=10, bias=True)
)
### define loss function as optimizer
import torch.optim as optim

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
### Train the network
for epoch in range(2):
    
    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        inputs ,labels = data
        optimizer.zero_grad()
        
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        
        running_loss += loss.item()
        if i % 2000 == 1999:
            print('[%d, %5d] loss : %.3f'%(epoch + 1, i + 1, running_loss / 2000))
    
print('Finished Training')
[1,  2000] loss : 2.212
[1,  4000] loss : 4.095
[1,  6000] loss : 5.784
[1,  8000] loss : 7.361
[1, 10000] loss : 8.859
[1, 12000] loss : 10.343
[2,  2000] loss : 1.413
[2,  4000] loss : 2.789
[2,  6000] loss : 4.143
[2,  8000] loss : 5.459
[2, 10000] loss : 6.777
[2, 12000] loss : 8.078
Finished Training
### test the network on the test data
dataiter = iter(testloader)
images, labels = dataiter.next()

imshow(torchvision.utils.make_grid(images))
print('GroundTruth : ', ' '.join('%5s' % classes[labels[j]] for j in range(4)))
GroundTruth :    cat  ship  ship plane
outputs = net(images)
_, predicted = torch.max(outputs, 1)

print('Predicted : ', ' '.join('%5s' % classes[predicted[j]] for j in range(4)))
Predicted :    cat   car   car plane
correct = 0
total = 0

with torch.no_grad():
    for data in testloader:
        images, labels = data
        outputs = net(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()
        
print("Accuracy of the network on the 10000 test images : %d %%" % (100 * correct/total))
        
Accuracy of the network on the 10000 test images : 53 %
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
with torch.no_grad():
    for data in testloader:
        images, labels = data
        outputs = net(images)
        _, predicted = torch.max(outputs, 1)
        c = (predicted == labels).squeeze()
        for i in range(4):
            label = labels[i]
            class_correct[label] += c[i].item()
            class_total[label] += 1

for i in range(10):
    print("Accuracy of %5s : %2d %%" % (classes[i], 100 * class_correct[i] / class_total[i]))
Accuracy of plane : 67 %
Accuracy of   car : 54 %
Accuracy of  bird : 43 %
Accuracy of   cat : 21 %
Accuracy of  deer : 36 %
Accuracy of   dog : 58 %
Accuracy of  frog : 83 %
Accuracy of horse : 47 %
Accuracy of  ship : 56 %
Accuracy of truck : 70 %
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
cuda:0
net.to(device)
inputs, labels = inputs.to(device), labels.to(device)

相关文章

网友评论

    本文标题:(四) trainning a classifier

    本文链接:https://www.haomeiwen.com/subject/gwxdhctx.html