一些表示方法:
1)True positives(TP): 被正确地划分为正例的个数,即实际为正例且被分类器划分为正例的实例数;
2)False positives(FP): 被错误地划分为正例的个数,即实际为负例但被分类器划分为正例的实例数;
3)False negatives(FN): 被错误地划分为负例的个数,即实际为正例但被分类器划分为负例的实例数;
4)True negatives(TN): 被正确地划分为负例的个数,即实际为负例且被分类器划分为负例的实例数。
1.分类问题
- 1)正确率(accuracy)
正确率是我们最常见的评价指标,这个很容易理解,就是被分对的样本数除以所有的样本数,通常来说,正确率越高,分类器越好。 - 2)错误率(error rate)
错误率则与正确率相反,描述被分类器错分的比例,error rate = (FP+FN)/(P+N),对某一个实例来说,分对与分错是互斥事件,所以accuracy =1 - error rate; - 3)灵敏度(sensitive)
sensitive = TP/P,表示的是所有正例中被分对的比例,衡量了分类器对正例的识别能力; - 4)特效度(specificity)
specificity = TN/N,表示的是所有负例中被分对的比例,衡量了分类器对负例的识别能力; - 5)精度(precision)
精度是精确性的度量,表示被分为正例的示例中实际为正例的比例, - 6)召回率(recall)
召回率是覆盖面的度量,度量有多个正例被分为正例,可以看到召回率与灵敏度是一样的。 - 7)F-score
当想要同时衡量精度和召回率时,就需要引入一个新的标准,即F-score:
当β=1时,称为F1-score。(同理,β=2时,称为F2-score)
这时,精确率和召回率都很重要,权重相同。当有些情况下,我们认为精确率更重要些,那就调整β的值小于1,如果我们认为召回率更重要些,那就调整β的值大于1。
2.分割问题
- 1)mAP
- 2)mIOU
3.ROC曲线和AUC值
ROC曲线的横坐标为false positive rate(FPR),纵坐标为true positive rate(TPR),其中,FPR,TPR分别为:
对于二分类模型,输出的是一个(0-1)间的概率而不是直接输出0,1值,我们通常需要制定某一阈值threshold来使得输出分类到0和1,由于不同threshold的制定,会使得FPR,TPR发生相应的变化,这是绘制ROC曲线的依据。
- AUC值就是ROC曲线下包围的面积
1)AUC值可以作为模型的直接优化目标来进行优化
2)AUC和ROC曲线的优势
我们知道,测试时,更改正负样本的比例,会改变P,R的值,而ROC,AUC受其的影响就比较小。
下图(a),(b)为正常正负样本比例下的ROC曲线和Precision-Recall曲线,(c),(d)是不平衡正负样本比例下的ROC曲线和Precision-Recall曲线。
网友评论