美文网首页
十、dyld流程分析

十、dyld流程分析

作者: Mjs | 来源:发表于2020-10-09 16:14 被阅读0次

    dyld

    dyld(the dynamic link editor)是苹果的动态链接器,是苹果操作系统一个重要组成部分,在系统内核做好程序准备工作之后,交由dyld负责余下的工作。而且它是开源的,任何人可以通过苹果官网下载它的源码来阅读理解它的运作方式,了解系统加载动态库的细节。

    我们可以在这里下载源码

    dyld流程

    新建一个application,我们在ViewController中添加+ (void)load方法,断掉调试,bt打印出堆栈信息,最后一行显示

        frame #12: 0x0000000105dd0025 dyld`_dyld_start + 37
    

    我们在dyld源码中全局搜索找到入口
    我们通过注释来进行分析
    找到

    # call dyldbootstrap::start(app_mh, argc, argv, dyld_mh, &startGlue)
    

    dyldbootstrap命名空间中找到start方法

    uintptr_t start(const dyld3::MachOLoaded* appsMachHeader, int argc, const char* argv[],
                    const dyld3::MachOLoaded* dyldsMachHeader, uintptr_t* startGlue)
    {
        // Emit kdebug tracepoint to indicate dyld bootstrap has started <rdar://46878536>
        dyld3::kdebug_trace_dyld_marker(DBG_DYLD_TIMING_BOOTSTRAP_START, 0, 0, 0, 0);
    
        // if kernel had to slide dyld, we need to fix up load sensitive locations
        // we have to do this before using any global variables
        //dyld重定位
        rebaseDyld(dyldsMachHeader);
    
        // kernel sets up env pointer to be just past end of agv array
        const char** envp = &argv[argc+1];
        
        // kernel sets up apple pointer to be just past end of envp array
        const char** apple = envp;
        while(*apple != NULL) { ++apple; }
        ++apple;
    
        // set up random value for stack canary
        //栈溢出保护
        __guard_setup(apple);
    
    #if DYLD_INITIALIZER_SUPPORT
        // run all C++ initializers inside dyld
        runDyldInitializers(argc, argv, envp, apple);
    #endif
    
        // now that we are done bootstrapping dyld, call dyld's main
        uintptr_t appsSlide = appsMachHeader->getSlide();
        return dyld::_main((macho_header*)appsMachHeader, appsSlide, argc, argv, envp, apple, startGlue);
    }
    

    初始化dyld后,调用dyld::_main()
    dyld::_main()代码有600+行,我们一步步分析

    1. 环境变量配置

    
        ///从环境中获取主可执行文件的cdHash
        uint8_t mainExecutableCDHashBuffer[20];
        const uint8_t* mainExecutableCDHash = nullptr;
        if ( hexToBytes(_simple_getenv(apple, "executable_cdhash"), 40, mainExecutableCDHashBuffer) )
            mainExecutableCDHash = mainExecutableCDHashBuffer;
    
        // 获取主程序的macho_header
        sMainExecutableMachHeader = mainExecutableMH;
        // 获取主程序的slide值
        sMainExecutableSlide = mainExecutableSlide;
            // 设置上下文信息
        setContext(mainExecutableMH, argc, argv, envp, apple);
    
        // Pickup the pointer to the exec path.
        //获取主程序路径
        sExecPath = _simple_getenv(apple, "executable_path");
        //进程的头环境配置
        configureProcessRestrictions(mainExecutableMH, envp);
        //检测环境变量
        checkEnvironmentVariables(envp);
        defaultUninitializedFallbackPaths(envp);
        // 获取当前运行环境架构的信息
        getHostInfo(mainExecutableMH, mainExecutableSlide);
    

    2.共享缓存

    检查是否开启了共享缓存,以及共享缓存是否映射到共享区域,例如UIKitCoreFoundation

    
        // load shared cache
        // 检测共享缓存是否开启,在iOS中必须开启
        checkSharedRegionDisable((dyld3::MachOLoaded*)mainExecutableMH, mainExecutableSlide);
        if ( gLinkContext.sharedRegionMode != ImageLoader::kDontUseSharedRegion ) {
    #if TARGET_OS_SIMULATOR
            if ( sSharedCacheOverrideDir)
                ///检测共享缓存是否映射到了共享区域
                mapSharedCache();
    #else
            mapSharedCache();
    #endif
    
    
    static void mapSharedCache()
    {
        dyld3::SharedCacheOptions opts;
        opts.cacheDirOverride   = sSharedCacheOverrideDir;
        opts.forcePrivate       = (gLinkContext.sharedRegionMode == ImageLoader::kUsePrivateSharedRegion);
    
    
    #if __x86_64__ && !TARGET_OS_SIMULATOR
        opts.useHaswell         = sHaswell;
    #else
        opts.useHaswell         = false;
    #endif
        opts.verbose            = gLinkContext.verboseMapping;
        // 加载dyld缓存
        loadDyldCache(opts, &sSharedCacheLoadInfo);
    
        // update global state
        if ( sSharedCacheLoadInfo.loadAddress != nullptr ) {
            gLinkContext.dyldCache                              = sSharedCacheLoadInfo.loadAddress;
            dyld::gProcessInfo->processDetachedFromSharedRegion = opts.forcePrivate;
            dyld::gProcessInfo->sharedCacheSlide                = sSharedCacheLoadInfo.slide;
            dyld::gProcessInfo->sharedCacheBaseAddress          = (unsigned long)sSharedCacheLoadInfo.loadAddress;
            sSharedCacheLoadInfo.loadAddress->getUUID(dyld::gProcessInfo->sharedCacheUUID);
            dyld3::kdebug_trace_dyld_image(DBG_DYLD_UUID_SHARED_CACHE_A, sSharedCacheLoadInfo.path, (const uuid_t *)&dyld::gProcessInfo->sharedCacheUUID[0], {0,0}, {{ 0, 0 }}, (const mach_header *)sSharedCacheLoadInfo.loadAddress);
        }
    
    }
    
    bool loadDyldCache(const SharedCacheOptions& options, SharedCacheLoadInfo* results)
    {
        results->loadAddress        = 0;
        results->slide              = 0;
        results->errorMessage       = nullptr;
    
    #if TARGET_OS_SIMULATOR
        // simulator only supports mmap()ing cache privately into process
        //模拟器只支持mmap()将缓存私有地放入进程中
        return mapCachePrivate(options, results);
    #else
        if ( options.forcePrivate ) {
            // mmap cache into this process only
            //只缓存到这个进程中
            return mapCachePrivate(options, results);
        }
        else {
            // fast path: when cache is already mapped into shared region
            //快速路径:当缓存已经映射到共享区域时
            bool hasError = false;
            if ( reuseExistingCache(options, results) ) {
                hasError = (results->errorMessage != nullptr);
            } else {
                // slow path: this is first process to load cache
                //慢路径:这是第一个加载缓存的进程
                hasError = mapCacheSystemWide(options, results);
            }
            return hasError;
        }
    #endif
    }
    

    3. 主程序的初始化

            /// 实例化主程序
            /// 加载可执行文件,并生成一个ImageLoader
            sMainExecutable = instantiateFromLoadedImage(mainExecutableMH, mainExecutableSlide, sExecPath);
            gLinkContext.mainExecutable = sMainExecutable;
            gLinkContext.mainExecutableCodeSigned = hasCodeSignatureLoadCommand(mainExecutableMH);
    
    

    4. 插入动态库

    
            //加载所有DYLD_INSERT_LIBRARIES指定的库
            if  ( sEnv.DYLD_INSERT_LIBRARIES != NULL ) {
                for (const char* const* lib = sEnv.DYLD_INSERT_LIBRARIES; *lib != NULL; ++lib) 
                    loadInsertedDylib(*lib);
            }
            // record count of inserted libraries so that a flat search will look at
            //记录插入的库的数量,以便进行统一搜索
            // inserted libraries, then main, then others.
            //插入库,然后是main,然后是其他
            sInsertedDylibCount = sAllImages.size()-1;
    

    5. link 主程序

            // 链接主程序
            link(sMainExecutable, sEnv.DYLD_BIND_AT_LAUNCH, true, ImageLoader::RPathChain(NULL, NULL), -1);
    

    6. link 动态库

            // link any inserted libraries
            // do this after linking main executable so that any dylibs pulled in by inserted 
            // dylibs (e.g. libSystem) will not be in front of dylibs the program uses
            // 链接插入动态库
            // 链接主可执行文件猴执行此操作,这样插入的dylibs (e.g. libSystem)不会再程序使用的dylib前面
            if ( sInsertedDylibCount > 0 ) {
                for(unsigned int i=0; i < sInsertedDylibCount; ++i) {
                    ImageLoader* image = sAllImages[i+1];
                    link(image, sEnv.DYLD_BIND_AT_LAUNCH, true, ImageLoader::RPathChain(NULL, NULL), -1);
                    image->setNeverUnloadRecursive();
                }
                if ( gLinkContext.allowInterposing ) {
                    // only INSERTED libraries can interpose 只有插入的库可以插入
                    // register interposing info after all inserted libraries are bound so chaining works
                    //绑定所有插入的库猴,注入插入信息,以便链接工作
                    for(unsigned int i=0; i < sInsertedDylibCount; ++i) {
                        ImageLoader* image = sAllImages[i+1];
                        // 驻车符号插入
                        image->registerInterposing(gLinkContext);
                    }
                }
            }
    

    7. 弱引用绑定

    
            // Bind and notify for the main executable now that interposing has been registered
            //现在已经注册了插入操作,为主可执行文件绑定和通知
            uint64_t bindMainExecutableStartTime = mach_absolute_time();
            sMainExecutable->recursiveBindWithAccounting(gLinkContext, sEnv.DYLD_BIND_AT_LAUNCH, true);
            uint64_t bindMainExecutableEndTime = mach_absolute_time();
            ImageLoaderMachO::fgTotalBindTime += bindMainExecutableEndTime - bindMainExecutableStartTime;
            gLinkContext.notifyBatch(dyld_image_state_bound, false);
    
            // Bind and notify for the inserted images now interposing has been registered
            if ( sInsertedDylibCount > 0 ) {
                for(unsigned int i=0; i < sInsertedDylibCount; ++i) {
                    ImageLoader* image = sAllImages[i+1];
                    image->recursiveBind(gLinkContext, sEnv.DYLD_BIND_AT_LAUNCH, true);
                }
            }
            
            // <rdar://problem/12186933> do weak binding only after all inserted images linked
            //弱符号绑定
            sMainExecutable->weakBind(gLinkContext);
            gLinkContext.linkingMainExecutable = false;
    

    8. 执行初始化方法

    
        #if SUPPORT_OLD_CRT_INITIALIZATION
            // Old way is to run initializers via a callback from crt1.o
            //旧的方法是通过crt1.o的回调来运行初始化器
            if ( ! gRunInitializersOldWay ) 
                initializeMainExecutable(); 
        #else
            // run all initializers
            //运行所有初始化项
            initializeMainExecutable(); 
        #endif
    
    
    
    void initializeMainExecutable()
    {
        // record that we've reached this step
        gLinkContext.startedInitializingMainExecutable = true;
    
        // run initialzers for any inserted dylibs
        ImageLoader::InitializerTimingList initializerTimes[allImagesCount()];
        initializerTimes[0].count = 0;
        const size_t rootCount = sImageRoots.size();
        if ( rootCount > 1 ) {
            for(size_t i=1; i < rootCount; ++i) {
                sImageRoots[i]->runInitializers(gLinkContext, initializerTimes[0]);
            }
        }
        
        // run initializers for main executable and everything it brings up 
        sMainExecutable->runInitializers(gLinkContext, initializerTimes[0]);
        
        // register cxa_atexit() handler to run static terminators in all loaded images when this process exits
        if ( gLibSystemHelpers != NULL ) 
            (*gLibSystemHelpers->cxa_atexit)(&runAllStaticTerminators, NULL, NULL);
    
        // dump info if requested
        if ( sEnv.DYLD_PRINT_STATISTICS )
            ImageLoader::printStatistics((unsigned int)allImagesCount(), initializerTimes[0]);
        if ( sEnv.DYLD_PRINT_STATISTICS_DETAILS )
            ImageLoaderMachO::printStatisticsDetails((unsigned int)allImagesCount(), initializerTimes[0]);
    }
    
    

    全局搜索runInitializers(const

    void ImageLoader::runInitializers(const LinkContext& context, InitializerTimingList& timingInfo)
    {
        uint64_t t1 = mach_absolute_time();
        mach_port_t thisThread = mach_thread_self();
        ImageLoader::UninitedUpwards up;
        up.count = 1;
        up.imagesAndPaths[0] = { this, this->getPath() };
        processInitializers(context, thisThread, timingInfo, up);
        context.notifyBatch(dyld_image_state_initialized, false);
        mach_port_deallocate(mach_task_self(), thisThread);
        uint64_t t2 = mach_absolute_time();
        fgTotalInitTime += (t2 - t1);
    }
    

    查看processInitializers

    void ImageLoader::processInitializers(const LinkContext& context, mach_port_t thisThread,
                                         InitializerTimingList& timingInfo, ImageLoader::UninitedUpwards& images)
    {
        uint32_t maxImageCount = context.imageCount()+2;
        ImageLoader::UninitedUpwards upsBuffer[maxImageCount];
        ImageLoader::UninitedUpwards& ups = upsBuffer[0];
        ups.count = 0;
        // Calling recursive init on all images in images list, building a new list of
        // uninitialized upward dependencies.
        for (uintptr_t i=0; i < images.count; ++i) {
            images.imagesAndPaths[i].first->recursiveInitialization(context, thisThread, images.imagesAndPaths[i].second, timingInfo, ups);
        }
        // If any upward dependencies remain, init them.
        if ( ups.count > 0 )
            processInitializers(context, thisThread, timingInfo, ups);
    }
    
    void ImageLoader::recursiveInitialization(const LinkContext& context, mach_port_t this_thread, const char* pathToInitialize,
                                              InitializerTimingList& timingInfo, UninitedUpwards& uninitUps)
    {
        recursive_lock lock_info(this_thread);
        recursiveSpinLock(lock_info);//递归加锁
    
        if ( fState < dyld_image_state_dependents_initialized-1 ) {
            uint8_t oldState = fState;
            // break cycles 结束递归循环
            fState = dyld_image_state_dependents_initialized-1;
            try {
                // initialize lower level libraries first
                ...
                
                // record termination order
                if ( this->needsTermination() )
                    context.terminationRecorder(this);
    
                // let objc know we are about to initialize this image
                // 让objc知道我们将要初始化此镜像
                uint64_t t1 = mach_absolute_time();
                fState = dyld_image_state_dependents_initialized;
                oldState = fState;
                context.notifySingle(dyld_image_state_dependents_initialized, this, &timingInfo);
                
                // initialize this image
                // 初始化此镜像
                bool hasInitializers = this->doInitialization(context);
    
                // let anyone know we finished initializing this image
                ///让所有人知道我们已经完成了这个映像的初始化
                fState = dyld_image_state_initialized;
                oldState = fState;
                context.notifySingle(dyld_image_state_initialized, this, NULL);
                
                ...
            }
            ...
        }
        
        recursiveSpinUnLock();
    }
    

    我们先来看notifySingle

    
    static void notifySingle(dyld_image_states state, const ImageLoader* image, ImageLoader::InitializerTimingList* timingInfo)
    {
        //dyld::log("notifySingle(state=%d, image=%s)\n", state, image->getPath());
        std::vector<dyld_image_state_change_handler>* handlers = stateToHandlers(state, sSingleHandlers);
        if ( handlers != NULL ) {
            dyld_image_info info;
            info.imageLoadAddress   = image->machHeader();
            info.imageFilePath      = image->getRealPath();
            info.imageFileModDate   = image->lastModified();
            for (std::vector<dyld_image_state_change_handler>::iterator it = handlers->begin(); it != handlers->end(); ++it) {
                const char* result = (*it)(state, 1, &info);
                if ( (result != NULL) && (state == dyld_image_state_mapped) ) {
                    //fprintf(stderr, "  image rejected by handler=%p\n", *it);
                    // make copy of thrown string so that later catch clauses can free it
                    const char* str = strdup(result);
                    throw str;
                }
            }
        }
        // 是否被映射进来
        if ( state == dyld_image_state_mapped ) {
            // <rdar://problem/7008875> Save load addr + UUID for images from outside the shared cache
            if ( !image->inSharedCache() ) {
                dyld_uuid_info info;
                if ( image->getUUID(info.imageUUID) ) {
                    info.imageLoadAddress = image->machHeader();//头部信息处理
                    addNonSharedCacheImageUUID(info);
                }
            }
        }
        if ( (state == dyld_image_state_dependents_initialized) && (sNotifyObjCInit != NULL) && image->notifyObjC() ) {
            uint64_t t0 = mach_absolute_time();
            dyld3::ScopedTimer timer(DBG_DYLD_TIMING_OBJC_INIT, (uint64_t)image->machHeader(), 0, 0);
            (*sNotifyObjCInit)(image->getRealPath(), image->machHeader());
            uint64_t t1 = mach_absolute_time();
            uint64_t t2 = mach_absolute_time();
            uint64_t timeInObjC = t1-t0;
            uint64_t emptyTime = (t2-t1)*100;
            if ( (timeInObjC > emptyTime) && (timingInfo != NULL) ) {
                timingInfo->addTime(image->getShortName(), timeInObjC);
            }
        }
        // mach message csdlc about dynamically unloaded images
        //关于动态未加载镜像的mach消息csdlc
        if ( image->addFuncNotified() && (state == dyld_image_state_terminated) ) {
            notifyKernel(*image, false);
            const struct mach_header* loadAddress[] = { image->machHeader() };
            const char* loadPath[] = { image->getPath() };
            notifyMonitoringDyld(true, 1, loadAddress, loadPath);
        }
    }
    
    

    最后我们找到了(*sNotifyObjCInit),全局搜索,在registerObjCNotifiers中找到了对sNotifyObjCInit的赋值

    void registerObjCNotifiers(_dyld_objc_notify_mapped mapped, _dyld_objc_notify_init init, _dyld_objc_notify_unmapped unmapped)
    {
        // record functions to call
        sNotifyObjCMapped   = mapped;
        sNotifyObjCInit     = init;
        sNotifyObjCUnmapped = unmapped;
    ...
    }
    
    void _dyld_objc_notify_register(_dyld_objc_notify_mapped    mapped,
                                    _dyld_objc_notify_init      init,
                                    _dyld_objc_notify_unmapped  unmapped)
    {
        dyld::registerObjCNotifiers(mapped, init, unmapped);
    }
    
    

    这个时候我们就要去objc4-781源码中找到_dyld_objc_notify_register

    
    void _objc_init(void)
    {
        static bool initialized = false;
        if (initialized) return;
        initialized = true;
        
        // fixme defer initialization until an objc-using image is found?
        environ_init();
        tls_init();
        static_init();
        runtime_init();
        exception_init();
        cache_init();
        _imp_implementationWithBlock_init();
    
        _dyld_objc_notify_register(&map_images, load_images, unmap_image);
    
    #if __OBJC2__
        didCallDyldNotifyRegister = true;
    #endif
    }
    

    在这里我们看到是把load_images赋给sNotifyObjCInit,而load_images会调用所有的+load方法,所以notifySingle是个回调函数

    doInitialization 函数
    bool ImageLoaderMachO::doInitialization(const LinkContext& context)
    {
        CRSetCrashLogMessage2(this->getPath());
    
        // mach-o has -init and static initializers
        // mach-o有-init和静态初始化器
        doImageInit(context);
        doModInitFunctions(context);
        
        CRSetCrashLogMessage2(NULL);
        
        return (fHasDashInit || fHasInitializers);
    }
    
    • doImageInit for循环加载所有方法调用, libSystem的初始化必须先执行
    void ImageLoaderMachO::doImageInit(const LinkContext& context)
    {
        if ( fHasDashInit ) {
            const uint32_t cmd_count = ((macho_header*)fMachOData)->ncmds;
            const struct load_command* const cmds = (struct load_command*)&fMachOData[sizeof(macho_header)];
            const struct load_command* cmd = cmds;
            for (uint32_t i = 0; i < cmd_count; ++i) {//方法的调用
                switch (cmd->cmd) {
                    case LC_ROUTINES_COMMAND:
                        // Mach-O地址平移,得到一个函数方法
                        Initializer func = (Initializer)(((struct macho_routines_command*)cmd)->init_address + fSlide);
    #if __has_feature(ptrauth_calls)
                        func = (Initializer)__builtin_ptrauth_sign_unauthenticated((void*)func, ptrauth_key_asia, 0);
    #endif
                        // <rdar://problem/8543820&9228031> verify initializers are in image//验证初始化程序在镜像中
                        if ( ! this->containsAddress(stripPointer((void*)func)) ) {
                            dyld::throwf("initializer function %p not in mapped image for %s\n", func, this->getPath());
                        }
                        if ( ! dyld::gProcessInfo->libSystemInitialized ) {
                            // <rdar://problem/17973316> libSystem initializer must run first
                            //libSystem必须先初始化,优先级最高
                            dyld::throwf("-init function in image (%s) that does not link with libSystem.dylib\n", this->getPath());
                        }
                        if ( context.verboseInit )
                            dyld::log("dyld: calling -init function %p in %s\n", func, this->getPath());
                        {
                            dyld3::ScopedTimer(DBG_DYLD_TIMING_STATIC_INITIALIZER, (uint64_t)fMachOData, (uint64_t)func, 0);
                            func(context.argc, context.argv, context.envp, context.apple, &context.programVars);
                        }
                        break;
                }
                cmd = (const struct load_command*)(((char*)cmd)+cmd->cmdsize);
            }
        }
    }
    
    • doModInitFunctions 调用所有的cxx方法

    我们验证一下在c++方法中加上断点


    C++验证.png

    我们在_objc_init 方法中加上断点,可以看到


    _objc_init 流程.png

    结合上面的分析,从初始化_objc_init注册的_dyld_objc_notify_register的参数2,即load_images,到sNotifySingle --> sNotifyObjCInie=参数2 到sNotifyObjcInit()调用,形成了一个闭环
    所以可以简单的理解为sNotifySingle这里是添加通知即addObserver,_objc_init中调用_dyld_objc_notify_register相当于发送通知,即push,而sNotifyObjcInit相当于通知的处理函数,即selector

    _dyld_start --> dyldbootstrap::start --> dyld::_main --> dyld::initializeMainExecutable --> ImageLoader::runInitializers --> ImageLoader::processInitializers --> ImageLoader::recursiveInitialization --> doInitialization -->libSystem_initializer(libSystem.B.dylib) --> _os_object_init(libdispatch.dylib) --> _objc_init(libobjc.A.dylib)

    9.找到主程序入口main,从Load Command读取LC_MAIN入口,如果没有,就读取LC_UNIXTHREAD

    
                // find entry point for main executable
                // 找到main入口并执行
                result = (uintptr_t)sMainExecutable->getEntryFromLC_MAIN();
                if ( result != 0 ) {
                    // main executable uses LC_MAIN, we need to use helper in libdyld to call into main()
                    // main可执行文件使用LC_MAIN,我们需要使用libdyld中的helper函数来调用main()
                    if ( (gLibSystemHelpers != NULL) && (gLibSystemHelpers->version >= 9) )
                        *startGlue = (uintptr_t)gLibSystemHelpers->startGlueToCallExit;
                    else
                        halt("libdyld.dylib support not present for LC_MAIN");
                }
                else {
                    // main executable uses LC_UNIXTHREAD, dyld needs to let "start" in program set up for main()
                    //主可执行文件使用LC_UNIXTHREAD, dyld需要让“start”在程序设置为main()
                    result = (uintptr_t)sMainExecutable->getEntryFromLC_UNIXTHREAD();
                    *startGlue = 0;
                }
    

    相关文章

      网友评论

          本文标题:十、dyld流程分析

          本文链接:https://www.haomeiwen.com/subject/hdeluktx.html