美文网首页
RNN 循环神经网络 分类

RNN 循环神经网络 分类

作者: 地平线上的背影 | 来源:发表于2019-02-13 18:10 被阅读0次

    RNN在文本预测等方面有着诸多使用,也是重要的神经网络结构,其结构包括RNN,LSTM,GRU等。本文以分类这一任务为基础分析RNN的简单结构

    1. 引入包和设置超参数

    import torch
    from torch import nn
    import torchvision.datasets as dsets
    import torchvision.transforms as transforms
    import matplotlib.pyplot as plt
    
    
    # torch.manual_seed(1)    # reproducible
    
    # Hyper Parameters
    EPOCH = 1               # train the training data n times, to save time, we just train 1 epoch
    B_S = 64
    TIME_STEP = 28          # rnn time step / image height
    INPUT_SIZE = 28         # rnn input size / image width
    LR = 0.01               # learning rate
    DOWNLOAD_MNIST = True   # set to True if haven't download the data
    

    2. 准备MNIST数据

    # Mnist digital dataset
    train_data = dsets.MNIST(
        root='./mnist/',
        train=True,                         # this is training data
        transform=transforms.ToTensor(),    # Converts a PIL.Image or numpy.ndarray to
        # torch.FloatTensor of shape (C x H x W) and normalize in the range [0.0, 1.0]
        download=DOWNLOAD_MNIST,            # download it if you don't have it
    )
    
    # plot one example
    print(train_data.train_data.size())     # (60000, 28, 28)
    print(train_data.train_labels.size())   # (60000)
    plt.imshow(train_data.train_data[0].numpy(), cmap='gray')
    plt.title('%i' % train_data.train_labels[0])
    plt.show()
    
    # Data Loader for easy mini-batch return in training
    train_loader = torch.utils.data.DataLoader(dataset=train_data, batch_size=B_S, shuffle=True)
    
    # convert test data into Variable, pick 2000 samples to speed up testing
    test_data = dsets.MNIST(root='./mnist/', train=False, transform=transforms.ToTensor())
    test_x = test_data.test_data.type(torch.FloatTensor)[:2000]/255.   
    # shape (2000, 28, 28) value in range(0,1)
    test_y = test_data.test_labels.numpy()[:2000]    # covert to numpy array
    

    注:

    1. torchvision.datasets.MNIST(root, train, transform,download):root为MNIST数据所在路径,train为设置该数据集为训练数据(True)或检验数据(False),transform表示转换数据至某种形式,download为设置是否下载该数据(若已下载则设置为False)
    2. torch.utils.data.DataLoader(dataset, batch_size, shuffle):装载训练数据,其中dataset用于指定所装载数据集路径

    3. 构建RNN网络

    class RNN(nn.Module):
        def __init__(self):
            super(RNN, self).__init__()
    
            self.rnn = nn.LSTM(         # if use nn.RNN(), it hardly learns
                input_size=INPUT_SIZE,
                hidden_size=64,         # rnn hidden unit
                num_layers=1,           # number of rnn layer
                batch_first=True,       
    # input & output will has batch size as 1s dimension. e.g. (batch, time_step, input_size)
            )
    
            self.out = nn.Linear(64, 10)
    
        def forward(self, x):
            # x shape (batch, time_step, input_size)
            # r_out shape (batch, time_step, output_size)
            # h_n shape (n_layers, batch, hidden_size)
            # h_c shape (n_layers, batch, hidden_size)
            r_out, (h_n, h_c) = self.rnn(x, None)   # None represents zero initial hidden state
    
            # choose r_out at the last time step
            out = self.out(r_out[:, -1, :])
            return out
    
    
    rnn = RNN()
    print(rnn)
    

    注1:

    1. self.rnn=nn.LSTM(input_size,hidden_size,num_layers ):设定第一层级的RNN网络为LSTM,其中input_size表示输入数据的维度,hidden_size表示隐藏神经元数量,num_layers表示LSTM网络的层数
    2. self.out = nn.Linear(P1, P2):P1表示隐藏神经元个数,P2表示输出类别数
    3. LSTM存在两个输出和输入,表示预测内容与状态

    注2:不同LSTM比较


    单层三隐藏神经元LSTM
    三层六隐藏神经元LSTM

    4. 选择优化器与损失函数

    optimizer = torch.optim.Adam(rnn.parameters(), lr=LR)   # optimize all cnn parameters
    loss_func = nn.CrossEntropyLoss()                       # the target label is not one-hotted
    

    注:

    1. adam():最常用优化器之一,为AdaGrad与动量算法的组合
    2. nn.CrossEntropyLoss() :判断实际输出与期望输出的差异程度,多用于分类问题中判断预测目标概率分布与实际概率分布的差异

    5. 训练和测试

    # training and testing
    for epoch in range(EPOCH):
        for step, (b_x, b_y) in enumerate(train_loader):        # gives batch data
            b_x = b_x.view(-1, 28, 28)              # reshape x to (batch, time_step, input_size)
    
            output = rnn(b_x)                               # rnn output
            loss = loss_func(output, b_y)                   # cross entropy loss
            optimizer.zero_grad()                           # clear gradients for this training step
            loss.backward()                                 # backpropagation, compute gradients
            optimizer.step()                                # apply gradients
    
            if step % 50 == 0:
                test_output = rnn(test_x)                   # (samples, time_step, input_size)
                pred_y = torch.max(test_output, 1)[1].data.numpy()
                accuracy = float((pred_y == test_y).astype(int).sum()) / float(test_y.size)
                print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy(), '| test accuracy: %.2f' % accuracy)
    
    # print 10 predictions from test data
    test_output = rnn(test_x[:10].view(-1, 28, 28))
    pred_y = torch.max(test_output, 1)[1].data.numpy()
    print(pred_y, 'prediction number')
    print(test_y[:10], 'real number')
    

    相关文章

      网友评论

          本文标题:RNN 循环神经网络 分类

          本文链接:https://www.haomeiwen.com/subject/hebreqtx.html