Scala类型推导

作者: 光剑书架上的书 | 来源:发表于2016-05-01 04:18 被阅读667次

    Scala类型推导

    之剑

    2016.5.1 00:38:12

    类型系统

    什么是静态类型?为什么它们很有用?

    根据Picrce的说法:“类型系统是一个可以根据代码段计算出来的值对它们进行分类,然后通过语法的手段来自动检测程序错误的系统。”

    类型可以让你表示函数的域和值域。例如,在数学里,我们经常看到下面的函数:

    
    f: R -> N
    
    

    这个定义告诉我们函数”f”的作用是把实数集里的数映射到自然集里。

    抽象地说,这才是具体意义上的类型。类型系统给了我们一些表示这些集合的更强大的方式。

    有了这些类型标识,编译器现在可以 静态地(在编译期)判断这个程序是正确的。

    换句话说,如果一个值(在运行期)不能够满足程序里的限制条件的话,那么在编译期就会出错。

    通常来说,类型检测器(typechecker)只能够保证不正确的的程序不能通过编译。但是,它不能够保证所有正确的程序都能通过编译。

    由于类型系统的表达能力不断增加,使得我们能够生成出更加可靠的代码,因为它使得我们能够控制程序上的不可变,即是是程序还没有运行的情况下(在类型上限制bug的出现)。学术界一直在努力突破类型系统的表达能力的极限,包含值相关的类型。

    注意,所有的类型信息都会在编译期擦除。后面不再需要。这个被称为类型擦除。比如,Java里面的泛型的实现.

    Scala中的类型

    Scala强大的类型系统让我们可以使用更具有表现力的表达式。一些主要的特点如下:

    • 支持参数多态,泛型编程

    • 支持(局部)类型推导,这就是你为什么不需要写val i: Int = 12: Int

    • 支持存在向量(existential quantification),给一些没有名称的类型定义一些操作

    • 支持视图。 给定的值从一个类型到其他类型的“可转换性”

    参数多态

    多态可以用来编写泛型代码(用于处理不同类型的值),并且不会减少静态类型的表达能力。

    例如,没有参数多态的话,一个泛型的列表数据结构通常会是下面这样的写法(在Java还没有泛型的时候,确实是这样的):

    
    scala> 2 :: 1 :: "bar" :: "foo" :: Nil
    
    res5: List[Any] = List(2, 1, bar, foo)
    
    
    
    

    这样的话,我们就不能够恢复每个元素的类型信息。

    
    scala> res5.head
    
    res6: Any = 2
    
    

    这样一来,我们的应用里会包含一系列的类型转换(“asInstanceOf[]“),代码会缺少类型安全(因为他们都是动态类型的)。

    多态是通过指定类型变量来达到的。

    
    scala> def drop1[A](l: List[A]) = l.tail
    
    drop1: [A](l: List[A])List[A]
    
     
    
    scala> drop1(List(1,2,3))
    
    res1: List[Int] = List(2, 3)
    
    

    多态是scala里的一等公民

    简单来说,这意味着有一些你想在Scala里表达的类型概念会显得“太过于泛型”,从而导致编译器无法理解。所有的类型变量在运行期必须是确定的。

    对于静态类型的一个比较常见的缺陷就是有太多的类型语法。Scala提供了类型推导来解决这个问题。

    函数式语言里比较经典的类型推导的方法是 Hindlry-Milner,并且它是在ML里首先使用的。

    Scala的类型推导有一点点不同,不过思想上是一致的:推导所有的约束条件,然后统一到一个类型上。

    在Scala里,例如,你不能这样写:

    
    scala> { x => x }
    
    :7: error: missing parameter type
    
           { x => x }
    
    
    

    但是在OCaml里,你可以:

    
    # fun x -> x;;
    
    - : 'a -> 'a =
    
    
    
    

    在Scala里,所有的类型推导都是局部的。Scala一次只考虑一个表达式。例如:

    
    scala> def id[T](x: T) = x
    
    id: [T](x: T)T
    
     
    
    scala> val x = id(322)
    
    x: Int = 322
    
     
    
    scala> val x = id("hey")
    
    x: java.lang.String = hey
    
     
    
    scala> val x = id(Array(1,2,3,4))
    
    x: Array[Int] = Array(1, 2, 3, 4)
    
    
    
    

    在这里,类型都被隐藏了。Scala编译器自动推导参数的类型。注意我们也没有必要显示指定返回值的类型了。

    型变

    Scala的类型系统需要把类的继承关系和多态结合起来。类的继承使得类之间存在父子的关系。当把面向对象和多态结合在一起时,一个核心的问题就出来了:如果T'是T的子类,那么Container[T']是不是Container[T]的子类呢?Variance注释允许你在类继承和多态类型之间表达下面的这些关系:

    <table>
    <tr>
    <td></td><td>含义</td><td>Scala中的标记</td>
    </tr>
    <tr>
    <td>covariant(协变)</td><td> C[T’]是C[T]的子类</td><td>[+T]</td>
    </tr>
    <tr>
    <td>contravariant(逆变)</td><td>C[T]是C[T’]子类</td><td>[-T]</td>
    </tr>
    <tr>
    <td>invariant(不变)</td><td> C[T]和C[T’]不相关</td><td>[T]</td>
    </tr>
    </table>

    子类关系的真正意思是:对于一个给定的类型T,如果T’是它的子类,那么T’可以代替T吗?

    
    scala> class Contravariant[-A]
    
    defined class Contravariant
    
     
    
    scala> val cv: Contravariant[String] = new Contravariant[AnyRef]
    
    cv: Contravariant[AnyRef] = Contravariant@49fa7ba
    
     
    
    scala> val fail: Contravariant[AnyRef] = new Contravariant[String]
    
    :6: error: type mismatch;
    
     found   : Contravariant[String]
    
     required: Contravariant[AnyRef]
    
           val fail: Contravariant[AnyRef] = new Contravariant[String]     
    
    
    
    

    量化(Quantification)

    有时候你不需要给一个类型变量以名称,例如

    
    scala> def count[A](l: List[A]) = l.size
    
    count: [A](List[A])Int
    
    
    

    你可以用“通配符”来替代:

    
    scala> def count(l: List[_]) = l.size
    
    count: (List[_])Int
    
    

    什么是类型推导

    先看个代码:

    Map<Integer, Map<String, String>> m = new HashMap<Integer, Map<String, String>>(); 
    
    

    是啊, 这简直太长了,我们不禁感叹,这编译器也太愚蠢了.几乎一半字符都是重复的!

    针对泛型定义和实例太过繁琐的问题,在java 7 中引入了钻石运算符. 神奇的Coin项目,满足了你的心愿.

    于是,你在java 7之后可以这样写了:

    
    Map<Integer, Map<String, String>> m = new HashMap(); 
    
    

    钻石运算符通常用于简化创建带有泛型对象的代码,可以避免运行时 的异常,并且它不再要求程序员在编码时显示书写冗余的类型参数。实际上,编译器在进行词法解析时会自动推导类型,自动为代码进行补全,并且编译的字节码与 以前无异。

    当时在提案中,这个问题叫"Improved Type Inference for Generic Instance Creation",缩写ITIGIX听起来怪怪的,但是为啥叫钻石算法? 世界上, 哪有那么多为什么.

    Scala正是因为做了类型推导, 让Coders感觉仿佛在写动态语言的代码.

    在Scala中,高阶函数经常传递匿名函数.举个栗子:

    一段定义泛型函数的代码

    
    def dropWhile[A](list: List[A], f: A => Boolean): List[A]
    
    

    当我们传入一个匿名函数f来调用它,

    
    val mylist: List[Int] = List(1,2,3,4,5) 
    
    val listDropped = dropWhile( mylist, (x: Int) => x < 4 )
    
    

    listDropped的值是List(4,5)

    我们用大脑可以轻易判断, 当list: List[A] 中的类型A在mylist声明的时候已经指定了Int, 那么很明显, 在第二个参数中,我们的x也必是Int.

    很幸运Scala设计者们早已考虑到这一点,Scala编译器可以推导这种情况.但是你得按照Scala的规范限制来写你的dropWhile函数的签名(柯里化的): dropWhile( mylist )( f )

    
    def dropWhile[A] ( list: List[A] ) ( f: A => Boolean ) : List[A] = list match {
    
    case Cons(h,t) if f(h) => dropWhile(t)(f)
    
    case _ => list
    
    }
    
    

    如此而来,我们就可以直接像下面这样使用这个函数了:

    
    val mylist: List[Int] = List(1,2,3,4,5)
    
    val droppedList = dropWhile( mylist ) ( x => x < 4 )
    
    

    注意, x参数没有指定Int类型, 因为编译器直接通过mylist的泛型信息Int推导出x的类型也是Int.

    类型推导是一门博大的学问,背后有繁冗的理论, 这在编译器设计开发的时候需要解决的问题.

    |Scala|Haskell,ML|

    |---------|--------|

    |局部的(local)、基于流的(flow-based)类型推断|全局化的Hindley-Milner类型推断|

    在《Programming in Scala》一书中提到基于流的类型推断有它的局限性,但是对于面向对象的分支类型处理比Hindley-Mlner更加优雅。

    基于流的类型推导在偏应用函数场景下,不能对参数类型省略

    类型推导算法

    类型推导(Type Inference)是现代高级语言中一个越来越常见的特性。其实,这个特性在函数式语言

    中早有了广泛应用。而HindleyMilner推导器是所有类型推导器的基础。

    Scala实现的一个简单的HindleyMilner推导器:

    
        /*
    
         * http://dysphoria.net/code/hindley-milner/HindleyMilner.scala
    
         * Andrew Forrest
    
         *
    
         * Implementation of basic polymorphic type-checking for a simple language.
    
         * Based heavily on Nikita Borisov’s Perl implementation at
    
         * http://web.archive.org/web/20050420002559/www.cs.berkeley.edu/~nikitab/courses/cs263/hm.html
    
         * which in turn is based on the paper by Luca Cardelli at
    
         * http://lucacardelli.name/Papers/BasicTypechecking.pdf
    
         *
    
         * If you run it with "scala HindleyMilner.scala" it will attempt to report the types
    
         * for a few example expressions. (It uses UTF-8 for output, so you may need to set your
    
         * terminal accordingly.)
    
         *
    
         * Changes
    
         * June 30, 2011 by Liang Kun(liangkun(AT)baidu.com)
    
         * 1. Modify to enhance readability
    
         * 2. Extend to Support if expression in syntax
    
         *
    
         *
    
         *
    
         * Do with it what you will. :)
    
         */
    
    
    
        /** Syntax definition. This is a simple lambda calculous syntax.
    
         * Expression ::= Identifier
    
         * | Constant
    
         * | "if" Expression "then" Expression "else" Expression
    
         * | "lambda(" Identifier ") " Expression
    
         * | Expression "(" Expression ")"
    
         * | "let" Identifier "=" Expression "in" Expression
    
         * | "letrec" Identifier "=" Expression "in" Expression
    
         * | "(" Expression ")"
    
         * See the examples below in main function.
    
         */
    
        sealed abstract class Expression
    
    
    
        case class Identifier(name: String) extends Expression {
    
            override def toString = name
    
        }
    
    
    
        case class Constant(value: String) extends Expression {
    
            override def toString = value
    
        }
    
    
    
        case class If(condition: Expression, then: Expression, other: Expression) extends Expression {
    
            override def toString = "(if " + condition + " then " + then + " else " + other + ")"
    
        }
    
    
    
        case class Lambda(argument: Identifier, body: Expression) extends Expression {
    
            override def toString = "(lambda " + argument + " → " + body + ")"
    
        }
    
    
    
        case class Apply(function: Expression, argument: Expression) extends Expression {
    
            override def toString = "(" + function + " " + argument + ")"
    
        }
    
    
    
        case class Let(binding: Identifier, definition: Expression, body: Expression) extends Expression {
    
            override def toString = "(let " + binding + " = " + definition + " in " + body + ")"
    
        }
    
    
    
        case class Letrec(binding: Identifier, definition: Expression, body: Expression) extends Expression {
    
            override def toString = "(letrec " + binding + " = " + definition + " in " + body + ")"
    
        }
    
    
    
    
    
        /** Exceptions may happened */
    
        class TypeError(msg: String) extends Exception(msg)
    
        class ParseError(msg: String) extends Exception(msg)
    
    
    
    
    
        /** Type inference system */
    
        object TypeSystem {
    
            type Env = Map[Identifier, Type]
    
            val EmptyEnv: Map[Identifier, Type] = Map.empty
    
    
    
            // type variable and type operator
    
            sealed abstract class Type
    
            case class Variable(id: Int) extends Type {
    
                var instance: Option[Type] = None
    
                lazy val name = nextUniqueName()
    
    
    
                override def toString = instance match {
    
                    case Some(t) => t.toString
    
                    case None => name
    
                }
    
            }
    
    
    
            case class Operator(name: String, args: Seq[Type]) extends Type {
    
                override def toString = {
    
                    if (args.length == 0)
    
                        name
    
                    else if (args.length == 2)
    
                        "[" + args(0) + " " + name + " " + args(1) + "]"
    
                    else
    
                        args.mkString(name + "[", ", ", "]")
    
                }
    
            }
    
    
    
            // builtin types, types can be extended by environment
    
            def Function(from: Type, to: Type) = Operator("→", Array(from, to))
    
            val Integer = Operator("Integer", Array[Type]())
    
            val Boolean = Operator("Boolean", Array[Type]())
    
    
    
    
    
            protected var _nextVariableName = 'α';
    
            protected def nextUniqueName() = {
    
                val result = _nextVariableName
    
                _nextVariableName = (_nextVariableName.toInt + 1).toChar
    
                result.toString
    
            }
    
            protected var _nextVariableId = 0
    
            def newVariable(): Variable = {
    
                val result = _nextVariableId
    
                _nextVariableId += 1
    
                Variable(result)
    
            }
    
    
    
    
    
            // main entry point
    
            def analyze(expr: Expression, env: Env): Type = analyze(expr, env, Set.empty)
    
            def analyze(expr: Expression, env: Env, nongeneric: Set[Variable]): Type = expr match {
    
                case i: Identifier => getIdentifierType(i, env, nongeneric)
    
    
    
                case Constant(value) => getConstantType(value)
    
    
    
                case If(cond, then, other) => {
    
                    val condType = analyze(cond, env, nongeneric)
    
                    val thenType = analyze(then, env, nongeneric)
    
                    val otherType = analyze(other, env, nongeneric)
    
                    unify(condType, Boolean)
    
                    unify(thenType, otherType)
    
                    thenType
    
                }
    
    
    
                case Apply(func, arg) => {
    
                    val funcType = analyze(func, env, nongeneric)
    
                    val argType = analyze(arg, env, nongeneric)
    
                    val resultType = newVariable()
    
                    unify(Function(argType, resultType), funcType)
    
                    resultType
    
                }
    
    
    
                case Lambda(arg, body) => {
    
                    val argType = newVariable()
    
                    val resultType = analyze(body,
    
                                             env + (arg -> argType),
    
                                             nongeneric + argType)
    
                    Function(argType, resultType)
    
                }
    
    
    
                case Let(binding, definition, body) => {
    
                    val definitionType = analyze(definition, env, nongeneric)
    
                    val newEnv = env + (binding -> definitionType)
    
                    analyze(body, newEnv, nongeneric)
    
                }
    
    
    
                case Letrec(binding, definition, body) => {
    
                    val newType = newVariable()
    
                    val newEnv = env + (binding -> newType)
    
                    val definitionType = analyze(definition, newEnv, nongeneric + newType)
    
                    unify(newType, definitionType)
    
                    analyze(body, newEnv, nongeneric)
    
                }
    
            }
    
    
    
            protected def getIdentifierType(id: Identifier, env: Env, nongeneric: Set[Variable]): Type = {
    
                if (env.contains(id))
    
                    fresh(env(id), nongeneric)
    
                else
    
                    throw new ParseError("Undefined symbol: " + id)
    
            }
    
    
    
            protected def getConstantType(value: String): Type = {
    
                if(isIntegerLiteral(value))
    
                    Integer
    
                else
    
                    throw new ParseError("Undefined symbol: " + value)
    
            }
    
    
    
            protected def fresh(t: Type, nongeneric: Set[Variable]) = {
    
                import scala.collection.mutable
    
                val mappings = new mutable.HashMap[Variable, Variable]
    
                def freshrec(tp: Type): Type = {
    
                    prune(tp) match {
    
                        case v: Variable =>
    
                            if (isgeneric(v, nongeneric))
    
                                mappings.getOrElseUpdate(v, newVariable())
    
                            else
    
                                v
    
    
    
                        case Operator(name, args) =>
    
                            Operator(name, args.map(freshrec(_)))
    
                    }
    
                }
    
    
    
                freshrec(t)
    
            }
    
    
    
            protected def unify(t1: Type, t2: Type) {
    
                val type1 = prune(t1)
    
                val type2 = prune(t2)
    
                (type1, type2) match {
    
                    case (a: Variable, b) => if (a != b) {
    
                        if (occursintype(a, b))
    
                            throw new TypeError("Recursive unification")
    
                        a.instance = Some(b)
    
                    }
    
                    case (a: Operator, b: Variable) => unify(b, a)
    
                    case (a: Operator, b: Operator) => {
    
                        if (a.name != b.name ||
    
                            a.args.length != b.args.length) throw new TypeError("Type mismatch: " + a + " ≠ " + b)
    
                        
    
                        for(i <- 0 until a.args.length)
    
                            unify(a.args(i), b.args(i))
    
                    }
    
                }
    
            }
    
    
    
            // Returns the currently defining instance of t.
    
            // As a side effect, collapses the list of type instances.
    
            protected def prune(t: Type): Type = t match {
    
                case v: Variable if v.instance.isDefined => {
    
                    val inst = prune(v.instance.get)
    
                    v.instance = Some(inst)
    
                    inst
    
                }
    
                case _ => t
    
            }
    
    
    
            // Note: must be called with v 'pre-pruned'
    
            protected def isgeneric(v: Variable, nongeneric: Set[Variable]) = !(occursin(v, nongeneric))
    
    
    
            // Note: must be called with v 'pre-pruned'
    
            protected def occursintype(v: Variable, type2: Type): Boolean = {
    
                prune(type2) match {
    
                    case `v` => true
    
                    case Operator(name, args) => occursin(v, args)
    
                    case _ => false
    
                }
    
            }
    
    
    
            protected def occursin(t: Variable, list: Iterable[Type]) =
    
                list exists (t2 => occursintype(t, t2))
    
    
    
            protected val checkDigits = "^(\\d+)$".r
    
            protected def isIntegerLiteral(name: String) = checkDigits.findFirstIn(name).isDefined
    
        }
    
    
    
    
    
        /** Demo program */
    
        object HindleyMilner {
    
            def main(args: Array[String]){
    
                Console.setOut(new java.io.PrintStream(Console.out, true, "utf-8"))
    
    
    
                // extends the system with a new type[pair] and some builtin functions
    
                val left = TypeSystem.newVariable()
    
                val right = TypeSystem.newVariable()
    
                val pairType = TypeSystem.Operator("×", Array(left, right))
    
    
    
                val myenv: TypeSystem.Env = TypeSystem.EmptyEnv ++ Array(
    
                    Identifier("pair") -> TypeSystem.Function(left, TypeSystem.Function(right, pairType)),
    
                    Identifier("true") -> TypeSystem.Boolean,
    
                    Identifier("false")-> TypeSystem.Boolean,
    
                    Identifier("zero") -> TypeSystem.Function(TypeSystem.Integer, TypeSystem.Boolean),
    
                    Identifier("pred") -> TypeSystem.Function(TypeSystem.Integer, TypeSystem.Integer),
    
                    Identifier("times")-> TypeSystem.Function(TypeSystem.Integer,
    
                            TypeSystem.Function(TypeSystem.Integer, TypeSystem.Integer))
    
                )
    
    
    
                // example expressions
    
                val pair = Apply(
    
                    Apply(
    
                        Identifier("pair"), Apply(Identifier("f"), Constant("4"))
    
                    ),
    
                    Apply(Identifier("f"), Identifier("true"))
    
                )
    
                val examples = Array[Expression](
    
                    // factorial
    
                    Letrec(Identifier("factorial"), // letrec factorial =
    
                        Lambda(Identifier("n"), // lambda n =>
    
                            If(
    
                                Apply(Identifier("zero"), Identifier("n")),
    
    
    
                                Constant("1"),
    
    
    
                                Apply(
    
                                    Apply(Identifier("times"), Identifier("n")),
    
                                    Apply(
    
                                        Identifier("factorial"),
    
                                        Apply(Identifier("pred"), Identifier("n"))
    
                                    )
    
                                )
    
                            )
    
                        ), // in
    
                        Apply(Identifier("factorial"), Constant("5"))
    
                    ),
    
    
    
                    // Should fail:
    
                    // fn x => (pair(x(3) (x(true))))
    
                    Lambda(Identifier("x"),
    
                        Apply(
    
                            Apply(Identifier("pair"),
    
                                Apply(Identifier("x"), Constant("3"))
    
                            ),
    
                            Apply(Identifier("x"), Identifier("true"))
    
                        )
    
                    ),
    
    
    
                    // pair(f(3), f(true))
    
                    Apply(
    
                        Apply(Identifier("pair"), Apply(Identifier("f"), Constant("4"))),
    
                        Apply(Identifier("f"), Identifier("true"))
    
                    ),
    
    
    
    
    
                    // letrec f = (fn x => x) in ((pair (f 4)) (f true))
    
                    Let(Identifier("f"), Lambda(Identifier("x"), Identifier("x")), pair),
    
    
    
                    // Should fail:
    
                    // fn f => f f
    
                    Lambda(Identifier("f"), Apply(Identifier("f"), Identifier("f"))),
    
    
    
                    // let g = fn f => 5 in g g
    
                    Let(
    
                        Identifier("g"),
    
                        Lambda(Identifier("f"), Constant("5")),
    
                        Apply(Identifier("g"), Identifier("g"))
    
                    ),
    
    
    
                    // example that demonstrates generic and non-generic variables:
    
                    // fn g => let f = fn x => g in pair (f 3, f true)
    
                    Lambda(Identifier("g"),
    
                        Let(Identifier("f"),
    
                            Lambda(Identifier("x"), Identifier("g")),
    
                            Apply(
    
                                Apply(Identifier("pair"),
    
                                      Apply(Identifier("f"), Constant("3"))
    
                                ),
    
                                Apply(Identifier("f"), Identifier("true"))
    
                            )
    
                        )
    
                    ),
    
    
    
                    // Function composition
    
                    // fn f (fn g (fn arg (f g arg)))
    
                    Lambda( Identifier("f"),
    
                        Lambda( Identifier("g"),
    
                            Lambda( Identifier("arg"),
    
                                Apply(Identifier("g"), Apply(Identifier("f"), Identifier("arg")))
    
                            )
    
                        )
    
                    )
    
                )
    
    
    
                for(eg <- examples){
    
                    tryexp(myenv, eg)
    
                }
    
            }
    
    
    
            def tryexp(env: TypeSystem.Env, expr: Expression) {
    
                try {
    
                    val t = TypeSystem.analyze(expr, env)
    
                    print(t)
    
    
    
                }catch{
    
                    case t: ParseError => print(t.getMessage)
    
                    case t: TypeError => print(t.getMessage)
    
                }
    
                println(":\t" + expr)
    
            }
    
        }
    
    
    
        HindleyMilner.main(argv)
    
    

    Haskell写的一个 合一算法的简单实现:

    https://github.com/yihuang/haskell-snippets/blob/master/Unif.hs

    
    module Main where    
    
    
    
    import Data.List (intersperse)    
    
    import Control.Monad    
    
    
    
    -- utils --    
    
    
    
    mapFst :: (a -> b) -> (a, c) -> (b,   c)    
    
    mapFst    f           (a, c) =  (f a, c)    
    
    
    
    -- types --    
    
    
    
    type Name = String    
    
    
    
    data Term = Var Name    
    
             | App Name [Term]    
    
    
    
    -- 表示一个替换关系    
    
    type Sub = (Term, Name)    
    
    
    
    -- implementation --    
    
    
    
    -- 检查变量 Name 是否出现在 Term 中    
    
    occurs :: Name -> Term -> Bool    
    
    occurs x t = case t of    
    
     (Var y)    -> x==y    
    
     (App _ ts) -> and . map (occurs x) $ ts    
    
    
    
    -- 使用 Sub 对 Term 进行替换    
    
    sub :: Sub -> Term -> Term    
    
    sub (t1, y) t@(Var a)    
    
     | a==y      = t1    
    
     | otherwise = t    
    
    sub s (App f ts) = App f $ map (sub s) ts    
    
    
    
    -- 使用 Sub 列表对 Term 进行替换    
    
    subs :: [Sub] -> Term -> Term    
    
    subs ss t = foldl (flip sub) t ss    
    
    
    
    -- 把两个替换列表组合起来,同时用新加入的替换对其中所有 Term 进行替换    
    
    compose :: [Sub] -> [Sub] -> [Sub]    
    
    compose []     s1 = s1    
    
    compose (s:ss) s1 = compose ss $ s : iter s s1    
    
     where    
    
       iter :: Sub -> [Sub] -> [Sub]    
    
       iter s ss = map (mapFst (sub s)) ss    
    
    
    
    -- 合一函数    
    
    unify :: Term -> Term -> Maybe [Sub]    
    
    unify t1 t2 = case (t1, t2) of    
    
     (Var x,   Var y)   -> if x==y        then Just [] else Just [(t1, y)]    
    
     (Var x,   App _ _) -> if occurs x t2 then Nothing else Just [(t2, x)]    
    
     (App _ _, Var x)   -> if occurs x t1 then Nothing else Just [(t1, x)]    
    
     (App n1 ts1, App n2 ts2)    
    
                        -> if n1/=n2      then Nothing else unify_args ts1 ts2    
    
     where    
    
       unify_args [] [] = Just []    
    
       unify_args _  [] = Nothing    
    
       unify_args [] _  = Nothing    
    
       unify_args (t1:ts1) (t2:ts2) = do    
    
         u <- unify t1 t2    
    
         let update = map (subs u)    
    
         u1 <- unify_args (update ts1) (update ts2)    
    
         return (u1 `compose` u)    
    
    
    
    -- display --    
    
    
    
    instance Show Term where    
    
       show (Var s) = s    
    
       show (App name ts) = name++"("++(concat . intersperse "," $ (map show ts))++")"    
    
    
    
    showSub (t, s) = s ++ " -> " ++ show t    
    
    
    
    -- test cases --    
    
    
    
    a = Var "a"    
    
    b = Var "b"    
    
    c = Var "c"    
    
    d = Var "d"    
    
    x = Var "x"    
    
    y = Var "y"    
    
    z = Var "z"    
    
    f = App "f"    
    
    g = App "g"    
    
    j = App "j"    
    
    
    
    test t1 t2 = do    
    
       putStrLn $ show t1 ++ "  <==>  " ++ show t2    
    
       case unify t1 t2 of    
    
         Nothing -> putStrLn "unify fail"    
    
         Just u  -> putStrLn $ concat . intersperse "\n" $ map showSub u    
    
    
    
    testcases = [(j [x,y,z],    
    
                 j [f [y,y], f [z,z], f [a,a]])    
    
               ,(x,    
    
                 f [x])    
    
               ,(f [x],    
    
                 y)    
    
               ,(f [a, f [b, c], g [b, a, c]],    
    
                 f [a, a, x])    
    
               ,(f [d, d, x],    
    
                 f [a, f [b, c], f [b, a, c]])    
    
               ]    
    
    
    
    main = forM testcases (uncurry test)    
    
    

    相关文章

      网友评论

      本文标题:Scala类型推导

      本文链接:https://www.haomeiwen.com/subject/hgikrttx.html