官方文档:http://docs.python.org/library/json.html
Json在线解析网站:http://www.bejson.com/
- JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,它使得人们很容易的进行阅读和编写。同时也方便了机器进行解析和生成。适用于进行数据交互的场景,比如网站前台与后台之间的数据交互。
JSON和XML的比较可谓不相上下。
Python 中自带了JSON模块,直接import json就可以使用了。
JSON
json简单说就是javascript中的对象和数组,所以这两种结构就是对象和数组两种结构,通过这两种结构可以表示各种复杂的结构
- 1.对象:对象在js中表示为{ }括起来的内容,数据结构为 { key:value, key:value, ... }的键值对的结构,在面向对象的语言中,key为对象的属性,value为对应的属性值,所以很容易理解,取值方法为 对象.key 获取属性值,这个属性值的类型可以是数字、字符串、数组、对象这几种。
- 2.数组:数组在js中是中括号[ ]括起来的内容,数据结构为 ["Python", "javascript", "C++", ...],取值方式和所有语言中一样,使用索引获取,字段值的类型可以是 数字、字符串、数组、对象几种。
import json
json模块提供了四个功能:loads、dumps、load、dump,用于字符串 和 python数据类型间进行转换。
-
把Json格式字符串解码转换成Python对象 从json到python的类型转化对照如下:
1. json.loads()
JSON | Python |
---|---|
object | dict |
array | list |
string | unicode |
number(int) | float,long |
true | True |
false | False |
null | None |
# json_loads.py
import json
strList = '[1, 2, 3, 4]'
strDict = '{"city": "北京", "name": "大猫"}'
json.loads(strList)
# [1, 2, 3, 4]
json.loads(strDict) # json数据自动按Unicode存储
# {u'city': u'\u5317\u4eac', u'name': u'\u5927\u732b'}
2. json.dumps()
-
实现python类型转化为json字符串,返回一个str对象 把一个Python对象编码转换成Json字符串
-
从python原始类型向json类型的转化对照如下:
Python | JSON |
---|---|
dict | object |
list,tuple | array |
str,unicode | string |
int,long,float | number |
True | true |
Flase | Flase |
None | null |
# json_dumps.py
import json
#chardet是一个非常优秀的编码识别模块,可通过pip安装
import chardet#pip3 install chardet
listStr = [1, 2, 3, 4]
json.dumps(listStr)
# '[1, 2, 3, 4]'
tupleStr = (1, 2, 3, 4)
json.dumps(tupleStr)
# '[1, 2, 3, 4]'
dictStr = {"city": "北京", "name": "大猫"}
json.dumps(dictStr)
# '{"city": "\\u5317\\u4eac", "name": "\\u5927\\u5218"}'
# 注意:json.dumps() 序列化时默认使用的ascii编码
# 添加参数 ensure_ascii=False 禁用ascii编码,按utf-8编码
# chardet.detect()返回字典, 其中confidence是检测精确度
chardet.detect(json.dumps(dictStr))
# {'confidence': 1.0, 'encoding': 'ascii'}
print(json.dumps(dictStr, ensure_ascii=False))
# {"city": "北京", "name": "大刘"}
chardet.detect(json.dumps(dictStr, ensure_ascii=False))
# {'confidence': 0.99, 'encoding': 'utf-8'}
3. json.dump() 将Python内置类型序列化为json对象后写入文件
# json_dump.py
import json
listStr = [{"city": "北京"}, {"name": "大刘"}]
json.dump(listStr, open("listStr.json","w"), ensure_ascii=False)
dictStr = {"city": "北京", "name": "大刘"}
json.dump(dictStr, open("dictStr.json","w"), ensure_ascii=False)
4. json.load() 读取文件中json形式的字符串元素 转化成python类型
# json_load.py
import json
strList = json.load(open("listStr.json"))
print strList
# [{u'city': u'\u5317\u4eac'}, {u'name': u'\u5927\u5218'}]
strDict = json.load(open("dictStr.json"))
print strDict
# {u'city': u'\u5317\u4eac', u'name': u'\u5927\u5218'}
JsonPath
- JsonPath 是一种信息抽取类库,是从JSON文档中抽取指定信息的工具,提供多种语言实现版本,包括:Javascript, Python, PHP 和 Java。
JsonPath 对于 JSON 来说,相当于 XPATH 对于 XML。
安装 pip3 install jsonpath
- 也可以下载
下载地址:https://pypi.python.org/pypi/jsonpath
安装方法:点击Download URL链接下载jsonpath,解压之后执行python setup.py install
Json结构清晰,可读性高,复杂度低,非常容易匹配,下表中对应了XPath的用法。
XPath | JSONPath | 描述 |
---|---|---|
/ | $ | 根节点 |
. | @ | 现行节点 |
/ | .or[] | 取子节点 |
.. | n/a | 取父节点,Jsonpath未支持 |
// | .. | 就是不管位置,选择所有符合条件的条件 |
* | * | 匹配所有元素节点 |
@ | n/a | 根据属性访问,Json不支持,因为Json是个Key-value递归结构,不需要。 |
[] | [] | 迭代器标示(可以在里边做简单的迭代操作,如数组下标,根据内容选值等) |
| | [,] | 支持迭代器中做多选。 |
[] | ?() | 支持过滤操作. |
n/a | () | 支持表达式计算 |
() | n/a | 分组,JsonPath不支持 |
示例: 我们以拉勾网城市JSON文件 http://www.lagou.com/lbs/getAllCitySearchLabels.json 为例,获取所有城市。
# jsonpath_lagou.py
import requests
import jsonpath
import json
import chardet
url = 'http://www.lagou.com/lbs/getAllCitySearchLabels.json'
response = equests.get(url)
html = response.text
# 把json格式字符串转换成python对象
jsonobj = json.loads(html)
# 从根节点开始,匹配name节点
citylist = jsonpath.jsonpath(jsonobj,'$..name')
print(citylist)
print(type(citylist))
fp = open('city.json','w')
content = json.dumps(citylist, ensure_ascii=False)
print(content)
fp.write(content.encode('utf-8'))
fp.close()
网友评论