美文网首页
OkHttp3 源码分析

OkHttp3 源码分析

作者: 小神之路 | 来源:发表于2021-02-23 18:23 被阅读0次

    OkHttp3 源码分析

    基于okhttp3.14.9

    源码学习,先理清脉络,然后再深入的针对每一个小的知识点进行探究即可,切勿捡了芝麻丢了习惯

    通常我们使用OkHttp进行网络访问,主要包含以下三步
    一. 创建Request请求对象,封装请求相关的信息(url,method,body,headers)
    二. 创建OkHttpClient对象,负责帮助我们将请求执行
    三. 执行请求,设置对应的回调监听

    // 一. 创建Request请求对象
    Request request = new Request.Builder()
        .url("https://api.github.com/")
        .build();
        
    // 二. 创建OkhttpClient对象
    OkHttpClient client = new OkHttpClient.Builder()
        .addInterceptor(new HttpLoggingInterceptor())
        .cache(new Cache(cacheDir, cacheSize))
        .build();
        
    // 三. 执行请求
    // 方式一 同步执行
    okhttp3.Response execute = okHttpClient.newCall(request).execute();
    // 方式二 异步执行
    okHttpClient.newCall(request).enqueue(new okhttp3.Callback() {
        @Override
        public void onFailure(okhttp3.Call call, IOException e) {
            
        }
    
        @Override
        public void onResponse(okhttp3.Call call, okhttp3.Response response) throws IOException {
    
        }
    });
    

    上述两种方式分别是同步和异步执行请求,我们都分析下

    一、 Request请求创建

    // 1. 创建Request.Builder()
    public Builder() {
        dispatcher = new Dispatcher(); // 创建调度器,稍后在看
        protocols = DEFAULT_PROTOCOLS; // 默认协议 http/1.1 & http/2
        connectionSpecs = DEFAULT_CONNECTION_SPECS; // TSL连接 ,未加密、未认证的http连接
        eventListenerFactory = EventListener.factory(EventListener.NONE); // 事件监听工厂
        proxySelector = ProxySelector.getDefault(); // 代理选择器
        cookieJar = CookieJar.NO_COOKIES; 
        socketFactory = SocketFactory.getDefault(); // Socket工厂
        hostnameVerifier = OkHostnameVerifier.INSTANCE;
        certificatePinner = CertificatePinner.DEFAULT;
        proxyAuthenticator = Authenticator.NONE;
        authenticator = Authenticator.NONE;
        connectionPool = new ConnectionPool(); // 连接池
        dns = Dns.SYSTEM;
        followSslRedirects = true;
        followRedirects = true;
        retryOnConnectionFailure = true; //自动重连
        connectTimeout = 10_000; // 连接超时时间10s
        readTimeout = 10_000; // 读取超时时间10s
        writeTimeout = 10_000; //   写入超时时间10s
        pingInterval = 0; 
    }
    

    步骤 1 .这里是通过Request.Builder, 使用建造者模式, 初始化相关的信息,最后统一转化为Request对象,稍后详细分析

    // 2. 设置Url
    public Builder url(String url) {
        if (url == null) throw new NullPointerException("url == null");
        
        // 1.将websocket协议中的WS协议和WSS协议转换成了http协议和Https协议
        // Silently replace web socket URLs with HTTP URLs.
        if (url.regionMatches(true, 0, "ws:", 0, 3)) {
        url = "http:" + url.substring(3);
        } else if (url.regionMatches(true, 0, "wss:", 0, 4)) {
        url = "https:" + url.substring(4);
        }
        
        // 2.将url转化为HttpUrl,这里的细节比较多,我们无需关注太多
        HttpUrl parsed = HttpUrl.parse(url);
        if (parsed == null) throw new IllegalArgumentException("unexpected url: " + url);
        return url(parsed);
    }
    

    步骤 2 中,我们会把请求的url中websocket协议转化成http或https协议,然后使用HttpUrl进行转化,下面我们详细的说下转化过程

    // 3. HttpUrl对于url的转化工作
    public final class HttpUrl{
        public static HttpUrl get(String url) {
            return new Builder().parse(null, url).build();
        }
        
        Builder parse(@Nullable HttpUrl base, String input) {
          int pos = skipLeadingAsciiWhitespace(input, 0, input.length());
          int limit = skipTrailingAsciiWhitespace(input, pos, input.length());
          ...
          // Scheme
          // Authority.
          // Resolve the relative path.
          // Query.
          // Fragment.
        }
    }
    

    关于步骤 3 ,这里简单的说明下其主要作用,大家可以对照源码逐行进行分析

    1. 使用pos 和 limit 记录下 url真正开始和结束的地方
    2. 解析协议或者认证格式,将pos移动到协议或认证后
      2.1 解析协议scheme(http, https)
      2.2 解析url,存储其中用户名、密码、host域名、端口号和请求路径,比如(username:password@host:port),由于用户名,密码和端口号是可选的,所以可能是下面这种格式([username[:password]@]host[:port])
    3. 解析url 中?后面请求参数,移动pos
    4. 解析url 中#后面的网页标识符,
    // 4. 将builder中的参数封装到Request对象
    public Request build() {
        if (url == null) throw new IllegalStateException("url == null");
        return new Request(this);
    }
    
    public final class Request {
        final HttpUrl url;
        final String method;
        final Headers headers;
        final @Nullable RequestBody body;
        final Map<Class<?>, Object> tags;
        Request(Builder builder) {
            this.url = builder.url;
            this.method = builder.method;
            this.headers = builder.headers.build();
            this.body = builder.body;
            this.tags = Util.immutableMap(builder.tags);
        }
    }
    

    步骤 4 中,讲builder中解析的url, 请求方式method,请求headers, 请求体body等封装到Request对象中,下面我们继续看一下主流程二中OkHttpClient.Builder是如何创建OkHttpClient的

    二、 OkHttpClient对象创建

    // 5. OkHttpClient.Builder初始化
    public Builder() {
        dispatcher = new Dispatcher(); // 请求调度器,默认最大64个请求
        protocols = DEFAULT_PROTOCOLS; // 协议http2, http1.1
        connectionSpecs = DEFAULT_CONNECTION_SPECS; // 网络连通性协议tsl
        eventListenerFactory = EventListener.factory(EventListener.NONE); // 网络连接状态监听
        proxySelector = ProxySelector.getDefault(); // 网络代理
        if (proxySelector == null) {
        proxySelector = new NullProxySelector();
        }
        cookieJar = CookieJar.NO_COOKIES; // cookie
        socketFactory = SocketFactory.getDefault(); // Socket
        hostnameVerifier = OkHostnameVerifier.INSTANCE; // 域名校验
        certificatePinner = CertificatePinner.DEFAULT; // 证书校验
        proxyAuthenticator = Authenticator.NONE; // 认证
        authenticator = Authenticator.NONE;
        connectionPool = new ConnectionPool(); // 连接池
        dns = Dns.SYSTEM; // DNS解析
        followSslRedirects = true;
        followRedirects = true;
        retryOnConnectionFailure = true;
        callTimeout = 0;
        connectTimeout = 10_000; // 连接超时时间10秒
        readTimeout = 10_000; // 接收超时时间10秒
        writeTimeout = 10_000; // 发送超时时间10秒
        pingInterval = 0;
    }
    

    步骤 5 . 我们可以看到Builder的构造方法中,对OkHttpClient的相关的参数做了默认的初始化,最终build()时传给了OkHttpClient。中途还有一些添加拦截器的操作,下面我们仔细的看下方式一请求的实现

    三 、 执行请求

    okHttpClient.newCall(request).execute()

      // 6.准备一个将要再将来执行的请求Request
      /**
       * Prepares the {@code request} to be executed at some point in the future.
       */
      @Override public Call newCall(Request request) {
        return RealCall.newRealCall(this, request, false /* for web socket */);
      }
    

    步骤 6: 我们先来看一下RealCall的父类CallCall是一个准备好的可被执行的Request,如果被取消了就无法再次被执行,它内部有获取原始请求,同步异步执行请求,取消请求,克隆请求,和判断请求状态方法

    // 7. Call是一个准备好的用来执行的Request
    public interface Call extends Cloneable {
      //  返回原始的请求对象
      Request request();
    
      //  同步阻塞的返回响应,这个只代表传输层成功,并不一定是应用层成功(404,500)
      Response execute() throws IOException;
    
      // 异步的执行请求,将请求放入请求队列等待执行
      void enqueue(Callback responseCallback);
    
      // 取消一个请求,如果请求已经执行完成是无法被取消的
      void cancel();
    
    
      boolean isExecuted();
    
      boolean isCanceled();
    
      /**
       * Create a new, identical call to this one which can be enqueued or executed even if this call
       * has already been.
       */
      Call clone();
    
      interface Factory {
        Call newCall(Request request);
      }
    }
    
    

    在 7 中,我们看一下RealCall类,RealCall的三个参数分别是我们的Client、Request,和是否是websocket(默认false),然后会通过client的事件监听工厂为RealCall创建一个回调监听

    // 8. 创建了RealCall的实现
    static RealCall newRealCall(OkHttpClient client, Request originalRequest, boolean forWebSocket) {
        // Safely publish the Call instance to the EventListener.
        RealCall call = new RealCall(client, originalRequest, forWebSocket);
        call.transmitter = new Transmitter(client, call);
        return call;
    }
    

    步骤 8 中创建了准备好的用来执行的请求RealCall, 初始化了对应的发射器transmitter

    // 9. RealCall初始化
    private RealCall(OkHttpClient client, Request originalRequest, boolean forWebSocket) {
        this.client = client;
        this.originalRequest = originalRequest;
        this.forWebSocket = forWebSocket;
        this.retryAndFollowUpInterceptor = new RetryAndFollowUpInterceptor(client, forWebSocket);
      }
    

    步骤 9 中, RealCall的构造方法中主要是记录了client, 原始的request对象,并为client创建了重试和跟踪拦截器

    // 10. RealCall 执行
    @Override public Response execute() throws IOException {
    synchronized (this) {
        if (executed) throw new IllegalStateException("Already Executed");
          executed = true;
        }
        transmitter.timeoutEnter();
        transmitter.callStart();
        try {
          client.dispatcher().executed(this);
          return getResponseWithInterceptorChain();
        } finally {
          client.dispatcher().finished(this);
        }
    }
    

    步骤 10 :RealCall的执行excute方法。其核心我们可以看到是通过把Call放入到调度器内部的数组

    // 11. Dispatcher
    public final class Dispatcher {
      
      private final Deque<RealCall> runningSyncCalls = new ArrayDeque<>();
    
      /** Used by {@code Call#execute} to signal it is in-flight. */
      synchronized void executed(RealCall call) {
        // 放入队列等待执行
        runningSyncCalls.add(call);
      }
    }
    

    步骤11 :继续向下,我们会发现调度器Dispatcher,会把请求Call放入双端队列,

    后续真正去同步执行的是通过getResponseWithInterceptorChain()方法,并返回响应结果,这一步开始之前,我们先说一下拦截器

    • RetryAndFollowUpInterceptor
      在网络请求失败后进行重试
      当服务器返回当前请求需要进行重定向时直接发起新的请求,并在条件允许情况下复用当前连接

    • BridgeInteceptor
      设置内容长度,内容编码
      设置gzip压缩,并在接收到内容后进行解压。省去了应用层处理数据解压的麻烦
      添加cookie
      设置其他报头,如User-Agent,Host,Keep-alive等。其中Keep-Alive是实现多路复用的必要步骤

    • CacheInterceptor
      当网络请求有符合要求的Cache时直接返回Cache
      当服务器返回内容有改变时更新当前cache
      如果当前cache失效,删除

    • ConnectInterceptor
      为当前请求找到合适的连接,可能复用已有连接也可能是重新创建的连接,返回的连接由连接池负责决定。

    • CallServerInterceptor
      负责向服务器发起真正的访问请求,并在接收到服务器返回后读取响应返回

    拦截器的执行流程

    okhttp拦截器.png

    这一步Response result = getResponseWithInterceptorChain(); 就是执行拦截器链,直到返回Response:

    // 12.执行
     Response getResponseWithInterceptorChain() throws IOException {
        // 12.1 构建拦截器列表集合
       // Build a full stack of interceptors.
        List<Interceptor> interceptors = new ArrayList<>();
        interceptors.addAll(client.interceptors());
        interceptors.add(new RetryAndFollowUpInterceptor(client));
        interceptors.add(new BridgeInterceptor(client.cookieJar()));
        interceptors.add(new CacheInterceptor(client.internalCache()));
        interceptors.add(new ConnectInterceptor(client));
        if (!forWebSocket) {
          interceptors.addAll(client.networkInterceptors());
        }
        interceptors.add(new CallServerInterceptor(forWebSocket));
    
        // 12.2 把拦截器列表封装到为真正的执行拦截器链
        Interceptor.Chain chain = new RealInterceptorChain(interceptors, transmitter, null, 0,
            originalRequest, this, client.connectTimeoutMillis(),
            client.readTimeoutMillis(), client.writeTimeoutMillis());
    
        boolean calledNoMoreExchanges = false;
        try {
          // 12.3 开始执行,并返回响应Response对象
          Response response = chain.proceed(originalRequest);
          if (transmitter.isCanceled()) {
            closeQuietly(response);
            throw new IOException("Canceled");
          }
          return response;
        } catch (IOException e) {
          calledNoMoreExchanges = true;
          throw transmitter.noMoreExchanges(e);
        } finally {
          if (!calledNoMoreExchanges) {
            transmitter.noMoreExchanges(null);
          }
        }
      }
    

    步骤 12 中,会逐步添加各种类型的拦截器,然后将所有的拦截器全部封装到RealInterceptorChain中,最终调用其proceed方法,来执行请求,并返回Response对象。下面我们继续看下proceed方法具体做了哪些操作

    // 13 .
    public final class RealInterceptorChain implements Interceptor.Chain {
       @Override public Response proceed(Request request) throws IOException {
        return proceed(request, streamAllocation, httpCodec, connection);
      }
      
      // 13. 核心的执行过程
      public Response proceed(Request request, StreamAllocation streamAllocation, HttpCodec httpCodec,
          RealConnection connection) throws IOException {
          
        ......
    
        // Call the next interceptor in the chain.
        // 13.1 index从0开始,获取创建下一个拦截器链
        RealInterceptorChain next = new RealInterceptorChain(interceptors, streamAllocation, httpCodec,
            connection, index + 1, request, call, eventListener, connectTimeout, readTimeout,
            writeTimeout);
        // 13.2 取出当前的拦截器
        Interceptor interceptor = interceptors.get(index);
        
        // 13.3 执行当前拦截器返回对应的response
        Response response = interceptor.intercept(next);
    
        // Confirm that the next interceptor made its required call to chain.proceed().
       ...
    
        return response;
      }
    }
    
    

    步骤 13 , 最终的请求就是通过轮询整个interceptors,不断的创建每一个interceptor对应的chain,然后执行返回响应结果,这里采用的是经典的责任链模式。总结拦截器封装和执行过程如下

    1. 封装所有的拦截器到拦截器列表list<Interceptor> interceptors
    2. 创建第一个拦截器执行链RealInterceptorChain chain,传入拦截器列表interceptors,默认当前index=0,并调用拦截器链chain的proceed处理方法
    3. 拦截器链chain内部会取出1中封装的拦截器列表中下一个拦截器,并将其封装为下一个拦截器链next; 然后取出当前index=0的拦截器,用其去执行拦截器next
    4. 所以除了CallServerInterceptor拦截器,其它拦截器内部都需要调用chain的proceed方法,来保证执行当前下一个拦截器任务

    备注:关于response获取到响应后,会逐级逆向执行相关的拦截器,后续再补充

    异步执行

    okHttpClient.newCall(request).enqueue(callback)

    以上分析的是同步请求,异步请求也是大同小异:

    // 1. 放入队列
    @Override public void enqueue(Callback responseCallback) {
      synchronized (this) {
        if (executed) throw new IllegalStateException("Already Executed");
        executed = true;
      }
      captureCallStackTrace();
      client.dispatcher().enqueue(new AsyncCall(responseCallback));
    }
    

    继续跟踪到Dispatcher中

    // 2. Dispatcher中加入队列,使用executorService去执行AsyncCall
    synchronized void enqueue(AsyncCall call) {
        if (runningAsyncCalls.size() < maxRequests && runningCallsForHost(call) < maxRequestsPerHost) {
          runningAsyncCalls.add(call);
          executorService().execute(call);
        } else {
          readyAsyncCalls.add(call);
        }
      }
    

    Dispatcher的enqueue函数,先判断是否异步请求队列长度大于线程池最大请求数,以及当前主机的请求数超过5个。如果没有将给异步call加入到异步线程队列,调用线程池执行该call,如果超了,将该异步call加入到异步等待队列,

    // 3 NamedRunnable
    /**
     * Runnable implementation which always sets its thread name.
     */
    public abstract class NamedRunnable implements Runnable {
      protected final String name;
    
      public NamedRunnable(String format, Object... args) {
        this.name = Util.format(format, args);
      }
    
      @Override public final void run() {
        String oldName = Thread.currentThread().getName();
        Thread.currentThread().setName(name);
        try {
          execute();
        } finally {
          Thread.currentThread().setName(oldName);
        }
      }
    
      protected abstract void execute();
    }
    

    AsynCall是RealCall内部类,继承于NameRunnable,NameRunable其实就是Runnable的子类,定义了一个execute方法,执行在run()方法中。将AsyncCall加入到线程池,既然AsyncCall是一个Runnnable,那么就是执行Async的execute方法。

    @Override protected void execute() {
          boolean signalledCallback = false;
          try {
            Response response = getResponseWithInterceptorChain();  // 调用拦截器链,执行请求 返回response
            if (retryAndFollowUpInterceptor.isCanceled()) {
              signalledCallback = true;
              responseCallback.onFailure(RealCall.this, new IOException("Canceled"));
            } else {
              signalledCallback = true;
              responseCallback.onResponse(RealCall.this, response);//成功的回调
            }
          } catch (IOException e) {
            if (signalledCallback) {
              // Do not signal the callback twice!
              Platform.get().log(INFO, "Callback failure for " + toLoggableString(), e);
            } else {
              responseCallback.onFailure(RealCall.this, e);// 失败回调
            }
          } finally {
            client.dispatcher().finished(this); // 完成了请求
          }
        }
    

    在一次网络请求不管成功失败,都会调用finally中的这行代码client.dispatcher().finished(this); 别问我为啥?跟踪一下这行代码:

    /** Used by {@code AsyncCall#run} to signal completion. */
      void finished(AsyncCall call) {
        finished(runningAsyncCalls, call, true);
      }
      private <T> void finished(Deque<T> calls, T call, boolean promoteCalls) {
        int runningCallsCount;
        Runnable idleCallback;
        synchronized (this) {
          if (!calls.remove(call)) throw new AssertionError("Call wasn't in-flight!");
          if (promoteCalls) promoteCalls();
          runningCallsCount = runningCallsCount();
          idleCallback = this.idleCallback;
        }
    
        if (runningCallsCount == 0 && idleCallback != null) {
          idleCallback.run();
        }
      }
    

    将异步call熊runningAsyncCalls队列中移除,然后 如果是异步请求就会执行promoteCalls() 这个方法

    private void promoteCalls() {
        if (runningAsyncCalls.size() >= maxRequests) return; // Already running max capacity.
        if (readyAsyncCalls.isEmpty()) return; // No ready calls to promote.
    
        for (Iterator<AsyncCall> i = readyAsyncCalls.iterator(); i.hasNext(); ) {
          AsyncCall call = i.next();
    
          if (runningCallsForHost(call) < maxRequestsPerHost) {
            i.remove();
            runningAsyncCalls.add(call);
            executorService().execute(call);
          }
    
          if (runningAsyncCalls.size() >= maxRequests) return; // Reached max capacity.
        }
      }
    

    其实就是查看线程池情况,然后从readAsyncCall是中获取等待的异步call执行,如此循环,直到所有的异步call执行完成

    未完待续。。。
    如有问题,欢迎指正

    相关文章

      网友评论

          本文标题:OkHttp3 源码分析

          本文链接:https://www.haomeiwen.com/subject/hhkdfltx.html