<p/><div class="image-package"><img src="https://img.haomeiwen.com/i1648392/92aa45c58a77980f.jpg" contenteditable="false" img-data="{"format":"jpeg","size":104899,"height":900,"width":1600}" class="uploaded-img" style="min-height:200px;min-width:200px;" width="auto" height="auto"/>
</div><p>
</p><blockquote><p>给你一个整数数组 nums 和一个整数 k ,找出三个长度为 k 、互不重叠、且 3 * k 项的和最大的子数组,并返回这三个子数组。
以下标的数组形式返回结果,数组中的每一项分别指示每个子数组的起始位置(下标从 0 开始)。如果有多个结果,返回字典序最小的一个。
示例 1:
输入:nums = [1,2,1,2,6,7,5,1], k = 2
输出:[0,3,5]
解释:子数组 [1, 2], [2, 6], [7, 5] 对应的起始下标为 [0, 3, 5]。
也可以取 [2, 1], 但是结果 [1, 3, 5] 在字典序上更大。
示例 2:
输入:nums = [1,2,1,2,1,2,1,2,1], k = 2
输出:[0,2,4]
提示:
1 <= nums.length <= 2 * 104
1 <= nums[i] < 216
1 <= k <= floor(nums.length / 3)
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/maximum-sum-of-3-non-overlapping-subarrays
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。</p></blockquote><h1 id="7obdf">题解</h1><div class="image-package"><img src="https://img.haomeiwen.com/i1648392/452e9b7ffd18ecbf.jpg" contenteditable="false" img-data="{"format":"jpeg","size":23601,"height":381,"width":750}" class="uploaded-img" style="min-height:200px;min-width:200px;" width="auto" height="auto"/>
</div><h2 id="dhwj8">Swift</h2><blockquote><p><b/><span style="font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", "PingFang SC", "Hiragino Sans GB", "Microsoft YaHei", "Helvetica Neue", Helvetica, Arial, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol"; font-size: 14px;"/>
</p>class Solution {
func maxSumOfThreeSubarrays(_ nums: [Int], _ k: Int) -> [Int] {
var ans = [Int](repeating: 0, count: 3)
var sum1 = 0, maxSum1 = 0, maxSum1Idx = 0
var sum2 = 0, maxSum2 = 0, maxSum2Idx1 = 0, maxSum2Idx2 = 0
var sum3 = 0, maxTotal = 0
for i in (k * 2) ..< nums.count {
sum1 += nums[i - k * 2]
sum2 += nums[i - k]
sum3 += nums[i]
if i >= k * 3 - 1 {
if sum1 > maxSum1 {
maxSum1 = sum1
maxSum1Idx = i - k * 3 + 1
}
if maxSum1 + sum2 > maxSum2 {
maxSum2 = maxSum1 + sum2
maxSum2Idx1 = maxSum1Idx
maxSum2Idx2 = i - k * 2 + 1
}
if maxSum2 + sum3 > maxTotal {
maxTotal = maxSum2 + sum3
ans[0] = maxSum2Idx1
ans[1] = maxSum2Idx2
ans[2] = i - k + 1
}
sum1 -= nums[i - k * 3 + 1]
sum2 -= nums[i - k * 2 + 1]
sum3 -= nums[i - k + 1]
}
}
return ans
}
}
print(Solution().maxSumOfThreeSubarrays([1, 2, 1, 2, 6, 7, 5, 1], 2))
</blockquote><p>
</p><p>
</p><p>
</p><p>
</p>
网友评论