美文网首页
case study:website product recom

case study:website product recom

作者: Bitson | 来源:发表于2018-12-10 17:07 被阅读0次

    分析问题

    勾勒出解决方案

    - 推荐的产品分为“固定的推荐产品数据库”,输入产品会输出固定的一推荐系列产品

    - 还有动态的产品推荐,这个基于用户的clikcstream来生成到recommendation queue中

    - 最后结合两种类型的推荐来给出最后的推荐列表

    - 数据的处理过程种会使用到cache来存储session范围内的用户click stream,用来给推荐引擎来查询;还会缓存现在session用户的推荐列表来跟踪推荐列表,用户就可以更快的查询到推荐产品

    考虑用什么技术

    设计出架构

    - 事件在同一个user session内是有顺序的,所以同一个user session的事件要发送到同一个kafka partition

    - spark的map里使用cache里缓存的clickstream来做计算

    - 推荐服务结合动态推荐和静态推荐的结果,而且是无状态的,所有的状态都存储在in memory数据库中。推荐服务是在load balance后面,这样就可以做横向扩展

    - 这个架构需要做benchmark来保证响应时间在一定的范围内

    设计中的关键元素

    最佳实践(并发处理)

    - 数据存储在中心存储中,包括状态数据。中心存储是可以横向扩展的

    - 服务是无状态的

    - 服务部署在负载均衡后面

    - 并发处理是map reduce式的处理,map可以是处理并发进行,reduce尽量少而且在最后使用

    附录:好的推荐系统应该包括

    相关文章

      网友评论

          本文标题:case study:website product recom

          本文链接:https://www.haomeiwen.com/subject/hlxdhqtx.html