1.Opencv Opencv Hardware Decode Environment Configuration
cmake \
-D CMAKE_INSTALL_PREFIX=/DATACENTER1/workspace/libs/opencv2 \
-D CMAKE_BUILD_TYPE=RELEASE \
-D WITH_CUDA=ON \
-D WITH_CUBLAS=ON \
-D CUDA_FAST_MATH=ON \
-D WITH_OPENGL=ON \
-D WITH_CUFFT=ON \
-D WITH_NVCUVID=ON \
-D HAVE_FFMPEG=ON \
-D WITH_FFMPEG=ON \
-D WITH_V4L=ON \
-D WITH_LIBV4L=ON \
-D BUILD_OPENCV_CUDACODEC=ON \
-D CUDA_GENERATION=Auto \
..
-D FFMPEG_INCLUDE_DIRS="/DATACENTER1/zexin.wang/shanxi_docker/libs_/ffmpeg/lib/pkgconfig" \
在文件中查找关键词
grep -rl "FFMPEG_INCLUDE_DIRS" ./
-D FFMPEG_INCLUDE_DIR="/DATACENTER1/zexin.wang/shanxi_docker/libs_/ffmpeg/include" \
-D FFMPEG_LIB_DIR="/DATACENTER1/zexin.wang/shanxi_docker/libs_/ffmpeg/lib" \
1.2 Problem 1
CMake Warning at cmake/OpenCVPackaging.cmake:23 (message):
CPACK_PACKAGE_VERSION does not match version provided by version.hpp
header!
Call Stack (most recent call first):
CMakeLists.txt:1103 (include)
Solution 1
1.2 Problem 2
CMake Error: The following variables are used in this project, but they are set to NOTFOUND.
Please set them or make sure they are set and tested correctly in the CMake files:
opencv_dep_CUDA_nppi_LIBRARY
Solution 2:
https://blog.csdn.net/u014613745/article/details/78310916
解决方案如下:
1).找到FindCUDA.cmake文件
找到行
find_cuda_helper_libs(nppi)
改为
find_cuda_helper_libs(nppial)
find_cuda_helper_libs(nppicc)
find_cuda_helper_libs(nppicom)
find_cuda_helper_libs(nppidei)
find_cuda_helper_libs(nppif)
find_cuda_helper_libs(nppig)
find_cuda_helper_libs(nppim)
find_cuda_helper_libs(nppist)
find_cuda_helper_libs(nppisu)
find_cuda_helper_libs(nppitc)
2).找到行
set(CUDA_npp_LIBRARY "${CUDA_nppc_LIBRARY};${CUDA_nppi_LIBRARY};${CUDA_npps_LIBRARY}")
改为:
set(CUDA_npp_LIBRARY "${CUDA_nppc_LIBRARY};${CUDA_nppial_LIBRARY};${CUDA_nppicc_LIBRARY};${CUDA_nppicom_LIBRARY};${CUDA_nppidei_LIBRARY};${CUDA_nppif_LIBRARY};${CUDA_nppig_LIBRARY};${CUDA_nppim_LIBRARY};${CUDA_nppist_LIBRARY};${CUDA_nppisu_LIBRARY};${CUDA_nppitc_LIBRARY};${CUDA_npps_LIBRARY}")
3).找到行
unset(CUDA_nppi_LIBRARY CACHE)
改为:
unset(CUDA_nppial_LIBRARY CACHE)
unset(CUDA_nppicc_LIBRARY CACHE)
unset(CUDA_nppicom_LIBRARY CACHE)
unset(CUDA_nppidei_LIBRARY CACHE)
unset(CUDA_nppif_LIBRARY CACHE)
unset(CUDA_nppig_LIBRARY CACHE)
unset(CUDA_nppim_LIBRARY CACHE)
unset(CUDA_nppist_LIBRARY CACHE)
unset(CUDA_nppisu_LIBRARY CACHE)
unset(CUDA_nppitc_LIBRARY CACHE)
4)由于cuda9.0不支持2.0,所以,在该目录下找到OpenCVDetectCUDA.cmake文件:
将内容
set(__cuda_arch_ptx "")
if(CUDA_GENERATION STREQUAL "Fermi")
set(__cuda_arch_bin "2.0")
elseif(CUDA_GENERATION STREQUAL "Kepler")
set(__cuda_arch_bin "3.0 3.5 3.7")
修改为:(去掉2.0)
set(__cuda_arch_bin "2.0 3.0 3.5 3.7 5.0 5.2 6.0 6.1")
1.3 Problem 3
In file included from /DATACENTER1/workspace/libs/opencv-2.4.13.6/build/modules/gpu/opencv_gpu_pch_dephelp.cxx:1:0:
/DATACENTER1/workspace/libs/opencv-2.4.13.6/modules/gpu/src/precomp.hpp:98:29: fatal error: nvcuvid.h: 没有那个文件或目录
compilation terminated.
Solution 3
(1)拷贝Video_Codec_SDK下的 cuviddec.h nvcuvid.h两个文件到/opencv-2.4.13.6/modules/gpu/src
cp -f /DATACENTER1/zexin.wang/shanxi_docker/Video_Codec_SDK_9.0.20/include/nvcuvid.h .
cp -f /DATACENTER1/zexin.wang/shanxi_docker/Video_Codec_SDK_9.0.20/include/cuviddec.h .
1.4 Problem 4
Unsupported gpu architecture 'compute_20'
Solution4
在cmake的时候添加
-D CUDA_GENERATION=Auto
Problem 1.5
无法与ffmpeg交叉编译,ffmpeg的库不是全局的
将下面添加到~/.bashrc
export PKG_CONFIG_PATH=/DATACENTER1/zexin.wang/shanxi_docker/libs_/ffmpeg/lib/pkgconfig:$PKG_CONFIG_PATH
但还是遇到问题
最后暴力出奇迹
sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev
1.6 Final
make -j12
make install
2.Opencv Hardware Decode Example
参考文章:OpenCV gpu模块样例注释:video_reader.cpp
#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
#include <numeric>
#include <opencv2/core/core.hpp>
#include <opencv2/core/opengl_interop.hpp>
#include <opencv2/gpu/gpu.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/contrib/contrib.hpp>
int main(int argc, const char* argv[])
{
if (argc != 2)
return -1;
// 首先要检查是否CUDA模块是否可用
if(cv::gpu::getCudaEnabledDeviceCount()==0){
cerr<<"此OpenCV编译的时候没有启用CUDA模块"<<endl;
return -1;
}
const std::string fname(argv[1]);//文件名
cv::namedWindow("CPU", cv::WINDOW_NORMAL);//创建显示CPU读入图像的窗口
cv::namedWindow("GPU", cv::WINDOW_OPENGL);//创建显示GPU读入图像的窗口
cv::gpu::setGlDevice();//设置CUDA并且为当前使用OpenGL的进程初始化,参数默认为0
cv::Mat frame;//用于存储CPU读入图像的数组
cv::VideoCapture reader(fname);//实例化一个 用CPU从文件组读入视频的类
cv::gpu::GpuMat d_frame;//用于存储GPU读入图像的数组
cv::gpu::VideoReader_GPU d_reader(fname);//实例化一个 用GPU从文件组读入视频的类
d_reader.dumpFormat(std::cout);//输出视频帧信息
cv::TickMeter tm;
std::vector<double> cpu_times;
std::vector<double> gpu_times;
for (;;)
{
tm.reset(); tm.start();//计算CPU读入一帧的时间
if (!reader.read(frame))
break;
tm.stop();
cpu_times.push_back(tm.getTimeMilli());
tm.reset(); tm.start();//计算GPU读入一帧的时间
if (!d_reader.read(d_frame))
break;
tm.stop();
gpu_times.push_back(tm.getTimeMilli());
cv::imshow("CPU", frame);//显示CPU读入的视频
cv::imshow("GPU", d_frame);//显示GPU读入的视频
if (cv::waitKey(3) > 0)//如果等待时间大于3,就终止读入视频
break;
}
if (!cpu_times.empty() && !gpu_times.empty())//如果时间不为空
{
std::cout << std::endl << "Results:" << std::endl;
std::sort(cpu_times.begin(), cpu_times.end());//排序
std::sort(gpu_times.begin(), gpu_times.end());
double cpu_avg = std::accumulate(cpu_times.begin(), cpu_times.end(), 0.0) / cpu_times.size();//求CPU读入一帧的平均时间
double gpu_avg = std::accumulate(gpu_times.begin(), gpu_times.end(), 0.0) / gpu_times.size();//求GPU读入一帧的平均时间
std::cout << "CPU : Avg : " << cpu_avg << " ms FPS : " << 1000.0 / cpu_avg << std::endl;//输出平均时间和帧频
std::cout << "GPU : Avg : " << gpu_avg << " ms FPS : " << 1000.0 / gpu_avg << std::endl;
}
return 0;
}
Makefile参考
INC_ROOT := /DATACENTER1/oil_project/oil_support/external/libs
BOOST := $(INC_ROOT)/boost
OPENCV := /DATACENTER1/workspace/libs/opencv2
GLOG := $(INC_ROOT)/glog
GFLAG := $(INC_ROOT)/gflag
STREAMER_OPENCV := ./streamer_opencv
COMMON :=/DATACENTER1/oil_project/oil_support/common
INC_DIR := $(BOOST)/include $(OPENCV)/include $(GLOG)/include $(STREAMER_OPENCV)
LIB_DIR := $(GLOG)/lib $(BOOST)/lib $(GFLAG)/lib $(OPENCV)/lib
TAG_DIR := .
EXECUTABLE := $(TAG_DIR)/streamer
LIBS := pthread opencv_video opencv_core opencv_imgproc opencv_highgui opencv_contrib opencv_gpu \
glog gflags boost_program_options boost_thread boost_filesystem boost_system boost_date_time rt dl z#lzma # nvcuvid cuda
#ACEX_MACROS := -DACEX_NTRACE
CFLAGS := -g -Wall -fopenmp -m64 -w
CXXFLAGS := $(CFLAGS)
CPPFLAGS += $(addprefix -I, $(INC_DIR))
ARFLAGS :=
# CXX := /DATACENTER1/zexin.wang/gcc-9.2.0/build/bin/$(CXX)
RM-F := rm -f
SOURCE := $(wildcard *.c) $(wildcard *.cpp) $(wildcard ${STREAMER_OPENCV}/*.cpp)
OBJS := $(patsubst %.c,%.o,$(patsubst %.cpp,%.o,$(SOURCE)))
DEPS := $(patsubst %.o,%.d,$(OBJS))
MISSING_DEPS := $(filter-out $(wildcard $(DEPS)),$(DEPS))
MISSING_DEPS_SOURCES := $(wildcard $(patsubst %.d,%.c,$(MISSING_DEPS)) $(patsubst %.d,%.cpp,$(MISSING_DEPS)))
CPPFLAGS += -MD -std=c++11
.PHONY : everything deps objs clean veryclean rebuild
everything : $(EXECUTABLE)
deps : $(DEPS)
objs : $(OBJS)
clean :
@$(RM-F) */*/*/*/*.o
@$(RM-F) */*/*/*/*.d
@$(RM-F) */*/*/*.o
@$(RM-F) */*/*/*.d
@$(RM-F) */*/*.o
@$(RM-F) */*/*.d
@$(RM-F) */*.d
@$(RM-F) */*.o
veryclean: clean
@$(RM-F) $(EXECUTABLE)
rebuild: veryclean everything
ifneq ($(MISSING_DEPS),)
$(MISSING_DEPS) :
@$(RM-F) $(patsubst %.d,%.o,$@)
endif
-include $(DEPS)
$(EXECUTABLE) : $(OBJS)
rm -f $@
$(CXX) -o $(EXECUTABLE) $(OBJS) $(addprefix -L, $(LIB_DIR)) $(addprefix -l, $(LIBS)) -fopenmp
@$(RM-F) *.o
@$(RM-F) *.d
网友评论