美文网首页程序员
numpy 知识整理

numpy 知识整理

作者: 弦好想断 | 来源:发表于2020-04-19 17:23 被阅读0次

Numpy是科学计算库,是一个强大的N维数组对象ndarray,是广播功能函数。其整合C/C++.fortran代码的工具 ,更是Scipy、Pandas等的基础

.ndim :维度.shape :各维度的尺度 (2,5).size :元素的个数 10
.dtype :元素的类型 dtype(‘int32’)
.itemsize :每个元素的大小,以字节为单位 ,每个元素占4个字节
ndarray数组的创建np.arange(n) :元素从0到n-1的ndarray类型
np.ones(shape): 生成全1
np.zeros((shape), ddtype = np.int32) : 生成int32型的全0
np.full(shape, val): 生成全为val
np.eye(n) : 生成单位矩阵
np.ones_like(a) : 按数组a的形状生成全1的数组
np.zeros_like(a): 同理np.full_like (a, val) : 同理
np.linspace(1,10,4): 根据起止数据等间距地生成数组
np.linspace(1,10,4, endpoint = False):endpoint 表示10是否作为生成的元素
np.concatenate():

· 数组的维度变换

.reshape(shape) : 不改变当前数组,依shape生成.resize(shape) : 改变当前数组,依shape生成.swapaxes(ax1, ax2) : 将两个维度调换.flatten() : 对数组进行降维,返回折叠后的一位数组

· 数组的类型变换

数据类型的转换 :a.astype(new_type) : eg, a.astype (np.float) 数组向列表的转换: a.tolist() 数组的索引和切片

· 一维数组切片

a = np.array ([9, 8, 7, 6, 5, ])
a[1:4:2] –> array([8, 6]) : a[起始编号:终止编号(不含): 步长]

· 多维数组索引

a = np.arange(24).reshape((2, 3, 4))
a[1, 2, 3] 表示 3个维度上的编号, 各个维度的编号用逗号分隔

· 多维数组切片

a [:,:,::2 ] 缺省时,表示从第0个元素开始,到最后一个元素
数组的运算np.abs(a) np.fabs(a) : 取各元素的绝对值
np.sqrt(a) : 计算各元素的平方根
np.square(a): 计算各元素的平方
np.log(a) np.log10(a) np.log2(a) : 计算各元素的自然对数、10、2为底的对数
np.ceil(a) np.floor(a) : 计算各元素的ceiling 值, floor值(ceiling向上取整,floor向下取整)
np.rint(a) : 各元素 四舍五入np.modf(a) : 将数组各元素的小数和整数部分以两个独立数组形式返回
np.exp(a) : 计算各元素的指数值np.sign(a) : 计算各元素的符号值 1(+),0,-1(-).
np.maximum(a, b)
np.fmax() : 比较(或者计算)元素级的最大值np.minimum(a, b)
np.fmin() : 取最小值np.mod(a, b) : 元素级的模运算
np.copysign(a, b) : 将b中各元素的符号赋值给数组a的对应元素

· 数据的CSV文件存取

CSV (Comma-Separated Value,逗号分隔值) 只能存储一维和二维数组

np.savetxt(frame, array, fmt=’% .18e’, delimiter = None): frame是文件、字符串等,可以是.gz .bz2的压缩文件; array 表示存入的数组; fmt 表示元素的格式 eg: %d % .2f % .18e ; delimiter: 分割字符串,默认是空格
eg: np.savetxt(‘a.csv’, a, fmt=%d, delimiter = ‘,’ )

np.loadtxt(frame, dtype=np.float, delimiter = None, unpack = False) : frame是文件、字符串等,可以是.gz .bz2的压缩文件; dtype:数据类型,读取的数据以此类型存储; delimiter: 分割字符串,默认是空格; unpack: 如果为True, 读入属性将分别写入不同变量。 多维数据的存取a.tofile(frame, sep=’’, format=’%s’ ) : frame: 文件、字符串; sep: 数据分割字符串,如果是空串,写入文件为二进制 ; format:: 写入数据的格式
eg: a = np.arange(100).reshape(5, 10, 2)
a.tofile(“b.dat”, sep=”,”, format=’%d’)

np.fromfile(frame, dtype = float, count=-1, sep=’’): frame: 文件、字符串 ; dtype: 读取的数据以此类型存储; count:读入元素个数, -1表示读入整个文件; sep: 数据分割字符串,如果是空串,写入文件为二进制

PS: a.tofile() 和np.fromfile()要配合使用,要知道数据的类型和维度。

np.save(frame, array) : frame: 文件名,以.npy为扩展名,压缩扩展名为.npz ; array为数组变量np.load(fname) : frame: 文件名,以.npy为扩展名,压缩扩展名为

np.save() 和np.load() 使用时,不用自己考虑数据类型和维度。

· numpy随机数函数

numpy 的random子库

rand(d0, d1, …,dn) : 各元素是[0, 1)的浮点数,服从均匀分布
randn(d0, d1, …,dn):标准正态分布
randint(low, high,( shape)): 依shape创建随机整数或整数数组,范围是[ low, high)seed(s) : 随机数种子

shuffle(a) : 根据数组a的第一轴进行随机排列,改变数组a
permutation(a) : 根据数组a的第一轴进行随机排列, 但是不改变原数组,将生成新数组choice(a[, size, replace, p]) : 从一维数组a中以概率p抽取元素, 形成size形状新数组,replace表示是否可以重用元素,默认为False。
eg: [图片上传失败...(image-2da6d3-1587282445782)]
replace = False时,选取过的元素将不会再选取

uniform(low, high, size) : 产生均匀分布的数组,起始值为low,high为结束值,size为形状normal(loc, scale, size) : 产生正态分布的数组, loc为均值,scale为标准差,size为形状poisson(lam, size) : 产生泊松分布的数组, lam随机事件发生概率,size为形状
eg: a = np.random.uniform(0, 10, (3, 4)) a = np.random.normal(10, 5, (3, 4))

· numpy的统计函数

sum(a, axis = None) : 依给定轴axis计算数组a相关元素之和,axis为整数或者元组mean(a, axis = None) : 同理,计算平均值average(a, axis =None, weights=None) : 依给定轴axis计算数组a相关元素的加权平均值
std(a, axis = None) :同理,计算标准差
var(a, axis = None): 计算方差
eg: np.mean(a, axis =1) : 对数组a的第二维度的数据进行求平均a = np.arange(15).reshape(3, 5)
np.average(a, axis =0, weights =[10, 5, 1]) : 对a第一各维度加权求平均,weights中为权重,注意要和a的第一维匹配

min(a) max(a) : 计算数组a的最小值和最大值argmin(a) argmax(a) : 计算数组a的最小、最大值的下标(注:是一维的下标)unravel_index(index, shape) : 根据shape将一维下标index转成多维下标ptp(a) : 计算数组a最大值和最小值的差median(a) : 计算数组a中元素的中位数(中值)
eg:a = [[15, 14, 13],
[12, 11, 10] ]
np.argmax(a) –> 0
np.unravel_index( np.argmax(a), a.shape) –> (0,0)

· numpy的梯度函数

np.gradient(a) : 计算数组a中元素的梯度,f为多维时,返回每个维度的梯度 离散梯度: xy坐标轴连续三个x轴坐标对应的y轴值:a, b, c 其中b的梯度是(c-a)/2 而c的梯度是: (c-b)/1

当为二维数组时,np.gradient(a) 得出两个数组,第一个数组对应最外层维度的梯度,第二个数组对应第二层维度的梯度。[图片上传失败...(image-e91de7-1587282445782)]

· 图像的表示和变换

PIL, python image library 库
from PIL import Image
Image是PIL库中代表一个图像的类(对象)

im = np.array(Image.open(“.jpg”))

im = Image.fromarray(b.astype(‘uint8’)) # 生成
im.save(“路径.jpg”) # 保存

im = np.array(Image.open(“.jpg”).convert(‘L’)) # convert(‘L’)表示转为灰度图

相关文章

  • numpy 知识整理

    Numpy是科学计算库,是一个强大的N维数组对象ndarray,是广播功能函数。其整合C/C++.fortran代...

  • Numpy基础学习笔记梳理

    前言 重新梳理numpy知识点。整理几个常用的函数。主要参考DataCamp的numpy cheat sheet。...

  • Numpy库(一)- 数组的创建

    1 Numpy预备基础知识: 1.1 Numpy数据类型: ​ 1.2 Numpy数组属性: ​ 1.2.1 各个...

  • Numpy 学习图谱

    在学习 Numpy 的时候,整理了一份 Numpy 学习图谱,希望同样可以帮助到想要入门 Numpy 的朋友。 N...

  • NumPy之 索引技巧

    系列文章 一次性搞定NumPy入门基础知识NumPy之操控ndarray的形状NumPy之浅拷贝和深拷贝NumPy...

  • Numpy札记1_基础知识

    Numpy 基础知识 Numpy的主要对象是同质的多维数组。Numpy中的元素放在[]中,其中的元素通常都是数字,...

  • pandas

    自学整理记录,大神见笑 为什么要学习pandas numpy是处理数值型数据 pandas除了能处理numpy处理...

  • NumPy之操控ndarray的形状

    系列文章 一次性搞定NumPy入门基础知识NumPy之操控ndarray的形状NumPy之浅拷贝和深拷贝 概述 这...

  • NumPy之浅拷贝和深拷贝

    系列文章 一次性搞定NumPy入门基础知识NumPy之操控ndarray的形状NumPy之浅拷贝和深拷贝 概述 N...

  • numpy学习笔记

    整理:杨柳依参考资料:《Numpy学习指南(第2版)》 1. numpy 数组 1.1 创建数组 以下省略fro...

网友评论

    本文标题:numpy 知识整理

    本文链接:https://www.haomeiwen.com/subject/hovmbhtx.html