美文网首页
三路快排算法-求中位数问题(4)

三路快排算法-求中位数问题(4)

作者: ac619467fef3 | 来源:发表于2018-07-15 12:35 被阅读209次

算法面试高频题,求前K个数,或者求中位数

引至51CTO

三路快排算法思路

  1. 将数组分为三部分,随机选择数组中的一个数,使数组左边都小于这个数,右边大于这个数。
  2. 在递归处理左边数组,右边数组。

step1排列数组的时间复杂度是O(N),空间复杂度是O(1)
step2 递归调用的复杂度O(logN)

总体的时间赋值度O(NlogN)

Step 1 算法解释

    def __QuickSort(self,a,l,r):
        #a[l,r)
        if(l+1>=r):
            return
        rand_index = random.randint(l,r-1) 
        self.swap(a,l,rand_index) ## 对已经排好序的数组,有优化作用
        gt = r ##右边的指针位置
        lt = l ##左边的指针位置
        i = l+1 ## 遍历指针
        while(i<gt): ##遍历条件
            if(a[i]>a[l]):
                self.swap(a,i,gt-1)
                gt = gt -1 ##将大数换到右端,大数指针--
            elif(a[i]<a[l]):
                self.swap(a,lt+1,i)
                i = i+1
                lt= lt+1 ## 将小数换到左端,小数指针--
            else:
                i = i+1 ## 相等的数据,步进指针++
        self.swap(a,l,lt) ##将小数的最后一个和第一个数交换,结果是[l,lt)是小数
        self.__QuickSort(a,gt,r)
        self.__QuickSort(a,l,lt) ##递归调用

求中位数算法

利用快速排序思想,只处理中位数所在的区域(中数、大数或小数)

  • 中位数在大数区,对大数区快速排序
  • 中位数在小数区,对小数区快速排序
  • 中位数在中数区,返回

考虑中位数是len//2,len//2-1情况

def __swap(a,i,j):
    tmp  = a[i]
    a[i] = a[j]
    a[j] = tmp
    
def insertSort(a,l,r):
    #a[l,r)
    i = l
    while(i<r):
        j = i
        while(j>l):
            if (a[j]<a[j-1]):
                __swap(a,j,j-1)                
            else:
                break 
            j = j-1
        i = i+1

def sortMid(a):
    mid = len(a)//2
    sortHead(a,mid)
    
def sortHead(a,k):
    #a[l,r)
    assert(k<len(a))
    __sortHead(a,0,len(a),k)

def __sortHead(a,l,r,k):
    if(r-l<10):
        insertSort(a,l,r)
        return    
    rand = random.randint(l,r-1)
    __swap(a,l,rand)
    
    lt = l
    gt = r
    i  = l
    while(i<gt):
        if(a[i]>a[l]):
            __swap(a,gt-1,i)
            gt = gt -1
        elif(a[i]<a[l]):
            __swap(a,lt+1,i)
            i= i +1
            lt = lt + 1
        else:
            i = i+1
    __swap(a,lt,l)
## 判断k在哪个区域
    if(k-1<lt):
        ## 将k-1也进行排序,考虑len//2-1
        __sortHead(a,l,lt,k)
    if(k>=gt):
        __sortHead(a,gt,r,k)

测试代码

import copy
for i in range(50):
    total = random.randint(0,200000)
    a = np.random.randint(0,total,500000)
    a.tolist()
    b =  copy.copy(a)
    a.sort()
    mid1 = a[len(a)//2]
    mid1_left = a[len(a)//2-1]
    sortMid(b)
    mid2 = b[len(a)//2]
    mid2_left = b[len(a)//2-1]
    if(mid1 == mid2 and mid1_left==mid2_left):
        print("True")
    else:
        print("Flase")

相关文章

  • 三路快排算法-求中位数问题(4)

    算法面试高频题,求前K个数,或者求中位数 三路快排算法思路 将数组分为三部分,随机选择数组中的一个数,使数组左边都...

  • 快排和三路快排

    参考自 《算法》第四版 快排 三路快排 适用于数组里有较多重复元素

  • 蚂蚁金服二面总结

    蚂蚁金服二面总结 1,快排 中位数算法2,node的优势劣势使用node遇到了什么问题 是怎么解决的(回调地狱问题...

  • 算法之三路快排

    都说快排是个很伟大的排序算法,名如其名,速度很快,而且是原位排序. 快排的精髓就在于,从数组中找一个基准点piov...

  • 10-6 求无序数组中的中位数算法

    求无序数组中的中位数算法

  • LeetCode题解4:Median of Two Sorted

    Median of Two Sorted Arrays问题:求2个有序数组的中位数,要求算法时间复杂度为O(log...

  • 三路快排

  • 算法

    常用排序算法总结: 参考: 快速排序优化:快排的思路是每次都确定一个数据的位置,基于分治的思想,所以可以使用三路快...

  • 每日算法:findMedianSortedArrays

    此算法的关键是:在两个数组里面找最中间的数(4个);在求中位数的时候必然有一个整合数组,输出的double中位数应...

  • leetcode笔记

    75思路1:记数排序思路2:三路快排思路3:四路快排?类似题目88 215

网友评论

      本文标题:三路快排算法-求中位数问题(4)

      本文链接:https://www.haomeiwen.com/subject/hqkppftx.html