美文网首页Kali Linux
网络安全之内核提权漏洞深入分析

网络安全之内核提权漏洞深入分析

作者: 顶风作案7号 | 来源:发表于2022-04-28 19:13 被阅读0次

    背景知识

    本节内容描述了创建窗口时需要用到的结构体及函数:

    1. 用户态的窗口数据结构体:WNDCLASSEXW。
    2. 窗口数据保存在内核态时使用:tagWND和tagWNDK结构体。
    3. 用户态调用SetWindowLong可以设置窗口扩展内存数据,逆向分析SetWindowLong如何设置窗口扩展内存数据。

    窗口类拥有如下属性结构,此处仅列出比较重要的结构:

    typedef struct tagWNDCLASSEXW {
        UINT        cbSize;             //结构体的大小
        …
        UINT        style;              //窗口的风格
        WNDPROC     lpfnWndProc;        //处理窗口消息的回调函数地址
        int         cbClsExtra;         //属于此类窗口所有实例共同占用的内存大小
        int         cbWndExtra;         //窗口实例扩展内存大小
        LPCWSTR     lpszClassName;      //类名
        …
    } WNDCLASSEXW
    
    

    在用户态创建窗口时,需要调用RegisterClass注册窗口类,每个窗口类有自己的名字,调用CreateWindow创建窗口时传入类的名字,即可创建对应的窗口实例。
    当cbWndExtra不为0时,系统会申请一段对应大小的空间,如果回调到用户态申请空间时,可能会触发漏洞。
    内核中使用两个结构体来保存窗口数据tagWND和tagWNDK:

    ptagWND             //内核中调用ValidateHwnd传入用户态窗口句柄可返回此数据指针
        0x18 unknown
            0x80 kernel desktop heap base   //内核桌面堆基址
        0x28 ptagWNDk   // 需要重点关注这个结构体,结构体在下方:
        0xA8 spMenu
    
    

    tagWNDK结构体,需要重点关注此结构体:

    struct tagWNDK
    {
        ULONG64 hWnd;               //+0x00
        ULONG64 OffsetToDesktopHeap;//+0x08 tagWNDK相对桌面堆基址偏移
        ULONG64 state;              //+0x10
        DWORD dwExStyle;            //+0x18
        DWORD dwStyle;              //+0x1C
        BYTE gap[0x38];
        DWORD rectBar_Left;         //0x58
        DWORD rectBar_Top;          //0x5C
        BYTE gap1[0x68];
        ULONG64 cbWndExtra;         //+0xC8 窗口扩展内存的大小
        BYTE gap2[0x18];
        DWORD dwExtraFlag;          //+0xE8  决定SetWindowLong寻址模式
        BYTE gap3[0x10];            //+0xEC
        DWORD cbWndServerExtra;     //+0xFC
        BYTE gap5[0x28];
        ULONG64 pExtraBytes;    //+0x128 模式1:内核偏移量 模式2:用户态指针
    };
    
    

    当WNDCLASSEXW 中的cbWndExtra值不为0时,创建窗口时内核会回调到用户态函数USER32!_xxxClientAllocWindowClassExtraBytes申请一块cbWndExtra大小的内存区域,并且将返回地址保存在tagWNDK结构体的pExtraBytes变量中。

    【一>所有资源获取<一】
    1、很多已经买不到的绝版电子书
    2、安全大厂内部的培训资料
    3、全套工具包
    4、100份src源码技术文档
    5、网络安全基础入门、Linux、web安全、攻防方面的视频
    6、应急响应笔记 7、 网络安全学习路线
    8、ctf夺旗赛解析
    9、WEB安全入门笔记

    使用函数SetWindowLong和GetWindowLong,可对窗口扩展内存进行读写,进入内核后调用栈如下:

    win32kfull!xxxSetWindowLong
    win32kfull!NtUserSetWindowLong+0xc7
    win32k!NtUserSetWindowLong+0x16
    nt!KiSystemServiceCopyEnd+0x25
    win32u!NtUserSetWindowLong+0x14
    USER32!_SetWindowLong+0x6e
    CVE_2022_21882!wmain+0x25d
    
    

    SetWindowLong函数形式如下:

    t01e35ecd70aea552c7.png

    第二个参数为index,含义为设置扩展内存偏移index处的内容。
    在win32kfull!xxxSetWindowLong函数中,会对第二个参数index进行判断,防止越界:

    t0177360681c31d0da0.png

    137行代码判断index+4如果大于cbWndServerExtra+ cbWndExtra,表明越界,一般情况下cbWndServerExtra为0,如果越界,会跳转到117行LABEL_34,设置v18为1413,跳转到LABEL_55,调用UserSetLastError设置错误值,我们可以在cmd下查看此错误值的含义:

    image.png

    如果没有越界的话,接下来会根据不同的模式来使用pExtraBytes,如下:

    image.png

    在xxxSetWindowLong函数中:

    正常情况下cbWndServerExtra为0,157行如果index+4< cbWndServerExtra,那么修改的是窗口的保留属性,例如GWL_WNDPROC对应-4,含义为设置窗口的回调函数地址。我们需要设置的是窗口扩展内存,所以进入165行的代码区域。

    在167行会判断dwExtraFlag属性是否包含0x800,如果包含,那么168行代码destAddress=pExtraBytes+index+内核桌面堆基址,此处pExtraBytes作为相对内核桌面堆基址的相对偏移量,(QWORD)(pTagWnd->field_18+128)为内核桌面堆基地址 ,对应的汇编代码为

    image.png

    在171行处,dwExtraFlag属性不包含0x800,此时destAddress=index+pExtraBytes,此处pExtraBytes作为用户态申请的一块内存区域地址。

    dwExtraFlag的含义:

    dwExtraFlag&0x800 != 0时,代表当前窗口是控制台窗口。调用AllocConsole申请控制台窗口时,调用程序会与conhost程序通信,conhost去创建控制台窗口,调用栈如下:

    image.png

    conhost获取到窗口句柄后,调用NtUserConsoleControl修改窗口为控制台类型,调用栈如下:

    image.png

    dwExtraFlag&0x800 ==0时,代表当前窗口是GUI窗口,调用CreateWindow时窗口就是GUI窗口。

    总结:

    1. xxxSetWindowLong设置扩展内存数据时,有如下两种模式:
      模式1:tagWND的dwExtraFlag属性包含0x800,使用间接寻址模式,基址为内核桌面堆基地址,pExtraBytes作为偏移量去读写内存。
      模式2:tagWND的dwExtraFlag属性不包含0x800,使用直接寻址模式,pExtraBytes直接读写内存。
    2. xxxSetWindowLong会检查index,如果index+4超过cbWndExtra,那么返回索引越界错误。

    漏洞成因

    此漏洞是对CVE-2021-1732漏洞的绕过,此处简要介绍下CVE-2021-1732漏洞:

    用户调用CreateWindow时,在对应的内核态函数中检查到窗口的cbWndExtra不为0,通过xxxCreateWindowEx-> xxxClientAllocWindowClassExtraBytes->调用回调表第123项用户态函数申请用户态空间,

    image.png

    1027行会调用USER32!_xxxClientAllocWindowClassExtraBytes,EXP在回调函数中调用NtUserConsoleControl修改窗口的dwExtraFlag和pExtraBytes,修改窗口类型为控制台。

    Windows修复代码在1039行,检查pExtraBytes是否被修改,此处查看汇编代码更为清晰

    image.png

    rdi+0x140-0x118 = rdi+0x28,得到tagWNDK,偏移0x128得到pExtraBytes,判断是否不等于0,如果不等于0,1045行代码会跳转,最终释放窗口,漏洞利用失败。

    也就是说:CVE-2021-1732的修复方法是在调用xxxClientAllocWindowClassExtraBytes函数后,在父函数CreateWindowEx中判断漏洞是否被利用了,这个修补方法之前是没有问题的。

    但是在后续代码更新后,有了新的路径来触发xxxClientAllocWindowClassExtraBytes函数:


    image.png

    在xxxSwitchWndProc函数中调用xxxClientAllocWindowClassExtraBytes后也有检查pExtraBytes是否为0,如果不为0,那么就复制pExtraBytes内存数据到新申请的内存地址中,没有检查dwExtraFlag是否被修改。

    总结:
    由于CVE-2021-1732漏洞修补时是在父函数中修复的,虽然当时没有问题,但是当多了xxxClientAllocWindowClassExtraBytes函数的触发路径后,同样的漏洞又存在了,而且 CVE-2021-1732漏洞触发路径是在xxxCreateWindowEx中,此时窗口句柄还未返回给用户态,漏洞利用时需要更多的技巧,此漏洞利用时已经返回了窗口句柄,利用起来更加简单。

    利用漏洞的流程

    本节介绍了漏洞触发的流程,并介绍了触发漏洞及利用漏洞需要的各个知识点。

    漏洞触发利用的流程:

    image.png

    要利用这个漏洞,需要以下背景知识:

    6.1 触发用户态回调

    本节描述如何触发用户态回调,使内核回调到USER32!_xxxClientAllocWindowClassExtraBytes。

    在IDA中查看xxxClientAllocWindowClassExtraBytes的引用,有多处地方调用到了此函数,

    image.png

    查看xxxSwitchWndProc代码如下:

    image.png

    98行代码有cbWndServerExtra变量赋值,而在调用SetWindowLong时会使用index-cbWndServerExtra,所以我们真正想设置内存区域偏移index位置的变量时,参数2应该传入index+cbWndServerExtra。

    103行代码调用xxxClientAllocWindowClassExtraBytes返回值赋值给了v20变量。

    111行代码检查原来的pExtraBytes是否为0,如果不为0,那么就复制内存的数据,还会释放原来的pExtraBytes。

    117、123行代码都会将v20变量赋值给pExtraBytes。

    而xxxSwitchWndProc函数是可以通过win32u! NtUserMessageCall函数来触发的,在用户态调用NtUserMessageCall函数会触发内核态函数xxxClientAllocWindowClassExtraBytes,函数调用栈如下:

    win32kfull!xxxClientAllocWindowClassExtraBytes
    win32kfull!xxxSwitchWndProc+0x167
    win32kfull!xxxWrapSwitchWndProc+0x3c
    win32kfull!NtUserfnINLPCREATESTRUCT+0x1c4
    win32kfull!NtUserMessageCall+0x11d    内核态
    …
    win32u! NtUserMessageCall             用户态
    
    

    在内核态的win32kfull!xxxClientAllocWindowClassExtraBytes函数中,会调用用户态的xxxClientAllocWindowClassExtraBytes函数。
    win32kfull!xxxClientAllocWindowClassExtraBytes函数如下:

    image.png

    KernelCallbackTable第123项对应_xxxClientAllocWindowClassExtraBytes函数,使用IDA查看函数内容:

    image.png

    此函数中调用RtlAllocateHeap函数来申请(a1)大小的内存,内存地址保存在addr变量中,然后调用NtCallbackReturn函数返回到内核态,返回的数据为addr变量的地址,对应在上面win32kfull!xxxClientAllocWindowClassExtraBytes函数中的v7变量,v7为addr变量的地址,v7即为上图中的addr。

    总结:
    触发回调函数的路径为:
    Win32u!NtUserMessageCall(用户态)->win32kfull!NtUserMessageCall(内核态)-> win32kfull!xxxSwitchWndProc(内核态)-> win32kfull!xxxClientAllocWindowClassExtraBytes(内核态)-> nt!KeUserModeCallback(内核态)-> USER32!_xxxClientAllocWindowClassExtraBytes(用户态,HOOK此函数)
    本节讲了如何从用户态进入到内核,又回调到USER32!_xxxClientAllocWindowClassExtraBytes函数的方法。

    6.2 HOOK回调函数

    上一小节讲了触发到USER32!_xxxClientAllocWindowClassExtraBytes函数的流程,我们还需要hook此回调函数,在回调函数中触发漏洞。下面代码可以将回调函数表项第123、124分别修改为MyxxxClientAllocWindowClassExtraBytes、MyxxxClientFreeWindowClassExtraBytes。

    image.png

    6.3 修改窗口模式为模式1

    上一小节讲了如何进入到用户态自定义的函数,本节讲述在自定义的函数中通过用户态未公开函数NtUserConsoleControl修改窗口模式为模式1,本节对NtUserConsoleControl函数进行逆向分析。

    函数win32u! NtUserConsoleControl可以设置模式为内核桌面堆相对寻址模式,此函数有三个参数,第一个参数为功能号,第二个参数为一个结构体的地址,结构体内存中第一个QWORD为窗口句柄,第三个参数为结构体的大小。

    NtUserConsoleControl函数会调用到内核态win32kfull模块的NtUserConsoleControl函数,调用栈如下:

    win32kfull!NtUserConsoleControl         内核态
    win32k!NtUserConsoleControl+0x16        内核态
    nt!KiSystemServiceCopyEnd+0x25
    win32u!NtUserConsoleControl+0x14        用户态
    CVE_2022_21882!wmain+0x3f4              用户态
    
    

    win32kfull模块NtUserConsoleControl判断参数,然后调用xxxConsoleControl如下:

    image.png

    17行判断参数index不大于6

    22行判断参数length小于0x18

    26行判断参数2指针不为空且length不为0

    以上条件满足时会调用xxxConsoleControl函数,传入参数为index、变量的地址,传入数据的长度, xxxConsoleControl函数会对index及len进行判断:

    image.png

    110行代码可知,index必须为6,113行代码可知len必须为0x10,115行到119行代码可知,传入参数地址指向的第一个QWORD数据必须为一个合法的窗口句柄,否则此函数会返回。

    image.png

    134、136行判断是否包含0x800属性,如果包含,v23赋值为内核桌面堆基地址+偏移量pExtraBytes,得到的v23为内核地址。

    140行代码,如果不包含0x800属性,那么调用DesktopAlloc申请一段cbWndExtra大小的内存保存在v23中。

    149到156行代码判断原来的pExtraBytes指针不为空,就拷贝数据到刚申请的内存中,并调用xxxClientFreeWindowClassExtraBytes->USER32!_xxxClientFreeWindowClassExtraBy释放内存。

    159、160行代码使用内核地址v23减去内核桌面堆基址得到偏移量v21,将v21赋值给pExtraBytes变量。

    使用如下代码可以修改窗口模式为模式1:

    ULONG64 buff[2]={hwnd};
    NtUserConsoleControl(6, &buff, sizeof(buff));即可将hwnd对应的窗口模式设置为模式1。
    
    

    总结:
    在自定义回调函数中调用win32u!NtUserConsoleControl可以设置窗口模式为模式1,传入参数需要符合下列要求:

    1. 参数1 index必须为6
    2. 参数2指向一段缓冲区,缓冲区第一个QWORD必须为一个合法的窗口句柄
    3. 参数3 len必须为0x10

    6.4 回调返回伪造偏移量

    在_xxxClientAllocWindowClassExtraBytes 函数中调用NtCallBackReturn回调函数可以返回到内核态:

    image.png

    伪造一个合适的偏移量Offset,然后应该取Offset地址传给NtCallbackReturn函数,可以将offset赋值给pExtraBytes变量。

    由于之前已经切换窗口为模式1,pExtraBytes含义为相对于内核桌面堆基址的偏移,再查看tagWNDK结构体,关注以下字段:

    +0x08   ULONG64 OffsetToDesktopHeap;    //窗口tagWNDK相对桌面堆基址偏移
    +0xE8   DWORD dwExtraFlag;              //包含0x800即为模式1
    +0x128  ULONG64 pExtraBytes;            //模式1:内核桌面堆偏移量 模式2:用户态指针
    
    

    OffsetToDesktopHeap为窗口本身地址tagWNDK相对于内核桌面堆基址的偏移,可以使用如下方法来伪造合适的偏移量:

    1. 创建多个窗口,如窗口0和窗口2(为了与EXP匹配),窗口2触发回调函数,返回窗口0的OffsetToDesktopHeap ,赋值给窗口2的pExtraBytes变量。
    2. 对窗口2调用SetWindowLong时,写入的目标地址为:内核桌面堆基址+pExtraBytes+index,此时pExtraBytes为窗口0的地址偏移,对窗口2调用SetWindowLong可以写窗口0的tagWNDK结构数据,这是第一次越界写。

    总结:
    调用NtCallbackReturn可以返回到内核中,伪造偏移量为窗口0的OffsetToDesktopHeap,赋值给窗口2的pExtraBytes,当对窗口2调用SetWindowLong时即可修改到窗口0的tagWNDK结构体。
    接下来我们需要获取窗口0的OffsetToDesktopHeap。

    6.5 泄露内核窗口数据结构

    上一小节中我们在用户态中要返回窗口0的OffsetToDesktopHeap到内核态,OffsetToDesktopHeap是内核态的数据,要想获取这个数据还需要一些工作。

    调用CreateWindow只能返回一个窗口句柄,用户态无法直接看到内核数据,但是系统把tagWNDK的数据在用户态映射了一份只读数据,只需要调用函数HMValidateHandle即可,动态库中没有导出此函数,需要通过IsMenu函数来定位:

    image.png

    定位USER32!HMValidateHandle的代码如下:

    image.png

    定位到USER32!HMValidateHandle函数地址后,传入hwnd即可获取tagWNDK数据地址。

        tagWNDK* p = HMValidateHandle(hwnd),通过tagWNDK指针即可获取到OffsetToDesktopHeap数据。
    
    

    6.6 如何布局内存

    通过上面的知识,我们可以通过窗口2修改窗口0的tagWNDK结构体数据,本节描述如何布局内存,构造写原语。

    应该通过NtUserConsoleControl修改窗口0切换到模式1,这样对窗口0调用SetWindowLong即可修改内核数据,但是调用SetWindowLong时index有范围限制,所以通过窗口2将窗口0的tagWNDK. cbWndExtra修改为0xFFFFFFFF,扩大窗口0可读写的范围。

    现在我们开始内存布局:

    创建窗口0,窗口0切换到模式1,pExtraBytes为扩展内存相对内核桌面堆基址的偏移量

    image.png

    窗口2触发回调后,回调函数中对窗口2调用NtUserConsoleControl,所以窗口2也处于模式1,pExtraBytes为扩展内存相对内核桌面堆基址的偏移量。

    回调函数中返回窗口0的OffsetToDesktopHeap,此时内存如下:

    image.png

    图中红色线条,此时窗口2的pExtraBytes为窗口0的OffsetToDesktopHeap,指向了窗口0的结构体地址,此时对窗口2调用SetWindowLong即可修改窗口0的内核数据结构

    通过窗口2修改窗口0的cbWndExtra

    image.png

    SetWindowsLong(窗口2句柄, 0xC8(此处还有一个偏移量),0xFFFFFFFF),即可修改窗口0的cbWndExtra为极大值,且此时窗口0处于模式1,如果传入一个较大的index且不大于0xFFFFFFFF,那么就可以越界修改到内存处于高地址处的其他窗口的数据。

    再次创建一个窗口1,窗口1处于模式2,不用修改模式

    image.png

    窗口1刚开始pExtraBytes指向用户态地址,使用模式2直接寻址。
    由于窗口0的pExtraBytes是相对于内核桌面堆基址的偏移量,窗口1的OffsetToDeskTopHeap是当前tagWNDK结构体与内核桌面堆基址的偏移量,所以这两个值可以计算一个差值,对窗口0调用SetWindowLong时传入这个差值即可写入到窗口1的结构体,再加上pExtraBytes相对于tagWNDK结构体的偏移即可设置窗口1的pExtraBytes为任意值。

    由于此时窗口1处于模式1直接寻址,且我们可以设置窗口1扩展内存地址pExtraBytes为任意地址,所以对窗口1调用SetWindowLong即可向任意内核地址写入数据。

    总结:
    内存布局的关键在于窗口0的pExtraBytes必须小于窗口1和窗口2的OffsetToDesktopHeap,这样的话在绕过了窗口0的cbWndExtra过小的限制后,对窗口0调用SetWindowLong传入的第二个参数,传入一个较大值,即可向后越界写入到窗口1和窗口2的tagWNDK结构体。
    我们来设想一下不满足内存布局的情况,假如窗口1的OffsetToDesktopHeap小于窗口0的pExtraBytes,即窗口1的tagWNDK位于低地址,窗口0的扩展内存位于高地址,那从窗口0越界往低地址写内容时,SetWindowLong的index必须传入一个64位的负数,但是SetWindowLong的第二个参数index是一个32位的值,调用函数时64位截断为32位数据,在内核中扩展到64位后高位为0还是个正数,所以窗口0无法越界写到低地址。

    EXP分析调试

    首先动态定位多个函数地址,接下来需要调用

    image.png
    #define MAGIC_CB_WND_EXTRA 0x1337
    
    

    调用函数RegisterClassEx创建两个窗口类:

    类名为NormalClass的窗口,窗口的cbWndExtra大小为0x20。

    类名为MagicClass的窗口,窗口的cbWndExtra大小为0x1337,使用MagicClass类创建的窗口会利用漏洞构造一个内核相对偏移量。

    内存布局的代码如下:

    image.png

    第241行到244行,创建了菜单,之后创建窗口使用此菜单。

    第245行到250行,使用NormalClass类名创建了50个窗口存放在g_hWnd数组中,然后销毁后面的48个窗口,这样是为了后面创建窗口时可以占用被销毁窗口的区域,缩短窗口之间的间距,此时g_hWnd[0]和g_hWnd[1]存放句柄,将这两个窗口称为窗口0和窗口1,其中247行调用HMValidateHandle函数传入句柄得到对应窗口在用户态映射的tagWNDK数据内存地址保存在g_pWndK数组中。

    第245行到255行,调用NtUserConsoleControl函数设置窗口0由用户态直接寻址切换为内核态相对偏移寻址,并且窗口0的pExtraBytes是相对于内核桌面堆基址的偏移。

    第257行到258行,使用MagicClass类名创建窗口2保存在g_hWnd[2]中,称为窗口2,然后调用HMValidateHandle获得窗口2的tagWNDK数据映射地址保存在g_pWndK[2]中。

    第260和278行代码判断内存布局是否成功,此时窗口0处于内核模式,所以窗口0的pExtraBytes为申请的内核内存空间(不是窗口内核对象地址)相对于内核桌面堆基地址的偏移,窗口1和窗口2为用户态模式,OffsetToDesktopHeap为窗口内核对象地址相对于内核桌面堆基地址的偏移,内存布局必须满足:

    窗口0的pExtraBytes小于窗口1的OffsetToDesktopHeap,计算差值extra_to_wnd1_offset,为正数。

    窗口0的pExtraBytes小于窗口2的OffsetToDesktopHeap,计算差值extra_to_wnd2_offset,为正数。

    如果布局失败,那就销毁窗口继续布局,如果最后一次布局失败,就退出。

    布局完成后,程序运行到此处:

    image.png

    程序在虚拟机中运行到DebugBreak()函数时,如果有内核调试器,调试器会自动中断:

    image.png

    此时指令位于DebugBreak函数中,输入k,栈回溯只显示了地址,没有显示符号表,输入

    gu;.reload /user
    
    
    image.png

    .reload /user会自动加载用户态符号,pdb文件位于本地对应目录,再次输入k,显示栈回溯,可以看到显示正常。
    我们先查看三个窗口的内核数据结构
    使用命令 dt tagWNDK poi(CVE_2022_21882!g_pWndK+0)可以以结构体方式查看窗口0的tagWNDK结构,在内存布局时已经对窗口0切换了模式,如下:

    image.png

    在调用NtUserMessageCall之前,窗口0处于模式1,窗口1和2处于模式2。

    相关文章

      网友评论

        本文标题:网络安全之内核提权漏洞深入分析

        本文链接:https://www.haomeiwen.com/subject/hqvlyrtx.html