美文网首页R作图
学习一篇NC的单细胞文章(五):tSNE

学习一篇NC的单细胞文章(五):tSNE

作者: 陈树钊 | 来源:发表于2021-01-25 01:03 被阅读0次

    我们昨日进行clustering之后,将1107个细胞分成了9个簇,今天学习tsne方面的知识。

    ##将unknown and undecided cells去除掉
    unkund <- which(pd_norm$cell_types_cl_all %in% c("undecided", "unknown"))
    
    #将已经再次细分好的细胞信息添加到sceset_final中,便于后续的分析
    sceset_ct <- sceset_final[,-unkund]
    pd_ct <- colData(sceset_ct)
    mat_ct <- assays(sceset_ct)$exprs
    mats_ct <- list()
    pds_ct <- list()
    for (i in 1:length(patients_now)) {
      mats_ct[[i]] <- mat_ct[,pd_ct$patient == patients_now[i]]
      pds_ct[[i]] <- pd_ct[pd_ct$patient == patients_now[i],]
    }
    names(mats_ct) <- patients_now
    names(pds_ct) <- patients_now
    
    #画6个样本的1107个细胞的细胞类型比例分布柱状图
    match_celltype_levels <- c("epithelial", "stroma", "endothelial", "Tcell", "Bcell", "macrophage")
    #将pd_ct转换为 tibble 类型
    tbl_pd_ct <- tbl_df(pd_ct)
    tbl_pd_ct <- tbl_pd_ct %>%
      group_by(patient) %>%
      mutate(cell_types_cl_all = factor(cell_types_cl_all, levels = match_celltype_levels)) %>%
      arrange(cell_types_cl_all)
      
    #画Fig1.c
    ggplot() +
      geom_bar(data = tbl_pd_ct, aes(x = patient, fill = factor(cell_types_cl_all)), position = position_fill(reverse = TRUE)) +
      scale_fill_manual(values = anno_colors$tsne) +
      labs(fill = "cell type", y = "fraction of cells")
    
    Fig1.c: 可以看到,病人样本之间的细胞类型有很明显的异质性。 Fig1.c
    #先看不同病人的细胞周期比例分布情况
    tbl_pd_cycle <- tbl_pd_ct %>%
      group_by(patient) %>%
      mutate(cycling_mel = factor(cycling_mel, levels = c("cycling", "non-cycling"))) %>%
      arrange(cycling_mel)
    ggplot() +
      geom_bar(data = tbl_pd_cycle, aes(x = patient, fill = factor(cycling_mel)), position = position_fill(reverse = TRUE)) +
      scale_fill_manual(values = anno_colors$cycling) +
      labs(fill = "cycling status", y = "fraction of cells")
    
    Fig1.d

    Fig1.d:PT081样本中,cycling细胞占比(>34% )最多。接着将细胞周期与细胞类型联系在一起。

    #epithelial细胞比例
    for (i in 1:length(patients_now)) {
      percent_epith <- length(intersect_all(which(pd_ct$patient == patients_now[i]),  #取交集
                                            which(pd_ct$cell_types_cl_all == "epithelial"), 
                                            which(pd_ct$cycling_mel == "cycling")))/length(intersect_all(
                                              which(pd_ct$patient == patients_now[i]), 
                                              which(pd_ct$cell_types_cl_all == "epithelial")))*100
      #细胞周期比例
      percent_all <- length(intersect_all(which(pd_ct$patient == patients_now[i]), 
                                          which(pd_ct$cycling_mel == "cycling")))/length(which(pd_ct$patient == patients_now[i]))*100
      print(ggplot(as.data.frame(pds_ct[[i]]), aes(x = mel_scores_g1s, y = mel_scores_g2m)) +
              geom_rect(ggplot2::aes(xmin = median(pd_ct$mel_scores_g1s) + 2 * mad(pd_ct$mel_scores_g1s),#以G1期cycling score中位数加其2MAD数值作为鉴定cycling cell的分界线
                            xmax = Inf, #Inf:无穷大
                            ymin = -Inf,
                            ymax = Inf),
                        fill = "gainsboro", alpha = 0.05) +#定义颜色、透明度
              geom_rect(aes(ymin = median(pd_ct$mel_scores_g2m) + 2 * mad(pd_ct$mel_scores_g2m),
                            ymax = Inf,
                            xmin = -Inf,
                            xmax = Inf),
    
                     fill = "gainsboro", alpha = 0.05) +   
              geom_point(aes(col = factor(cell_types_cl_all, levels = names(anno_colors$tsne)), 
                             shape = factor(cycling_mel)), size  = 5) +
              xlim(-0.15, 2) +
              ylim(-0.15, 2.8) +
              labs(col = "cell type", shape = "cycling", x = "G1S score", y = "G2M score", #注释
                   title = paste("patient ", patients_now[i], " (", round(percent_all), "% cycling cells)", sep = "")) + #round:四舍五入
              scale_color_manual(values = anno_colors$tsne))
    }
    
    Fig1.e

    Fig1.e:对于PT126来说,大部分处于cycling的细胞都被鉴定为上皮细胞。接着开始进行tSNE。

    #先对1112个细胞进行聚类
    to_plot_ct <- unique(pd_ct$cell_types_cl_all)
    #mat_ct是已经处理好的1112个细胞和13280个基因德数据框,pd_ct是对应的细胞和样本的注释信息,pd_ct$cell_types_cl_all指每个细#胞对应的细胞类型。
    #which函数中cell_types_cl_all等于#to_plot_ct的位置,然后提取mat_ct的表达谱,重新生成矩阵mat_short_ct
    mat_short_ct <- mat_ct[, which(pd_ct$cell_types_cl_all %in% to_plot_ct)] 
    #同样的,提取注释信息pd_short_ct
    pd_short_ct <- pd_ct[which(pd_ct$cell_types_cl_all %in% to_plot_ct), ]
    #开始tsne
    tsne_short_ct <- Rtsne(t(mat_short_ct), perplexity = 30)
    #最终得到一个list,其中tsne_short_ct$Y存储乐画图的信息,给tsne_short_ct$Y适当添加对应的细胞类型等属性
    colnames(tsne_short_ct$Y) <- c("col1", "col2")
    tsne_short_ct$Y <- as.data.frame(tsne_short_ct$Y)
    tsne_short_ct$Y$cell_types_cl_all <- pd_short_ct$cell_types_cl_all
    tsne_short_ct$Y$cell_types_markers <- pd_short_ct$cell_types_markers
    tsne_short_ct$Y$patient <- pd_short_ct$patient
    head(tsne_short_ct$Y)
    #这样子就得到了每个细胞的坐标,细胞类型,对应的marker和病人标本信息
    > head(tsne_short_ct$Y)
           col1          col2 cell_types_cl_all cell_types_markers patient
    1  16.12422 -20.896689773        epithelial         epithelial   PT089
    2  15.71953 -20.986193941        epithelial         epithelial   PT089
    3  14.95464 -20.609750926        epithelial         epithelial   PT089
    4 -33.07589  -0.069714081        macrophage         macrophage   PT089
    5 -32.66427  -0.007138231        macrophage         macrophage   PT089
    6  15.48987 -21.197981561        epithelial         epithelial   PT089
    #画图fig2a
    ggplot(tsne_short_ct$Y, aes(x = col1, y = col2, color = factor(cell_types_cl_all, levels = names(anno_colors$tsne)), 
                                shape = patient)) + 
      geom_point(size = 4) + 
      scale_color_manual(values = anno_colors$tsne) +
      labs(col = "patient", x = "tSNE dimension 1", y = "tSNE dimension 2", shape = "patient")
    
    fig2.a

    Fig2a:使用tSNE聚类对所有患者的1189个细胞进行分析,发现非上皮性细胞群和上皮细胞群之间有很大的分离,非上皮性细胞群被很好地分离成不同的簇,上皮细胞群则形成多个亚群。

    #对上皮细胞群进行tsne
    to_plot_ct <- c("epithelial")
    mat_short_ct <- mat_ct[, which(pd_ct$cell_types_cl_all %in% to_plot_ct)]
    pd_short_ct <- pd_ct[which(pd_ct$cell_types_cl_all %in% to_plot_ct), ]
    tsne_short_ct <- Rtsne(t(mat_short_ct), perplexity = 30)
    colnames(tsne_short_ct$Y) <- c("col1", "col2")
    tsne_short_ct$Y <- as.data.frame(tsne_short_ct$Y)
    tsne_short_ct$Y$cell_types_cl_all <- pd_short_ct$cell_types_cl_all
    tsne_short_ct$Y$cell_types_markers <- pd_short_ct$cell_types_markers
    tsne_short_ct$Y$patient <- pd_short_ct$patient
    #画图fig2c
    ggplot(tsne_short_ct$Y, aes(x = col1, y = col2, color = factor(patient, levels = names(anno_colors$patient)), 
                                shape = cell_types_cl_all)) + 
      geom_point(size = 4) + 
      scale_color_manual(values = anno_colors$patient) +
      labs(col = "patient", x = "tSNE dimension 1", y = "tSNE dimension 2", shape = "cell type")
    
    fig2c

    Fig2c:上皮细胞群通常被分成多个特异性簇(特别在PT039和PT081中更明显),6个样本均有上皮细胞簇。

    #对非上皮细胞群进行tsne
    to_plot_ct <- c("Bcell", "macrophage", "Tcell", "stroma", "endothelial")
    mat_short_ct <- mat_ct[, which(pd_ct$cell_types_cl_all %in% to_plot_ct)]
    pd_short_ct <- pd_ct[which(pd_ct$cell_types_cl_all %in% to_plot_ct), ]
    tsne_short_ct <- Rtsne(t(mat_short_ct), perplexity = 30)
    colnames(tsne_short_ct$Y) <- c("col1", "col2")
    tsne_short_ct$Y <- as.data.frame(tsne_short_ct$Y)
    tsne_short_ct$Y$cell_types_cl_all <- pd_short_ct$cell_types_cl_all
    tsne_short_ct$Y$cell_types_markers <- pd_short_ct$cell_types_markers
    tsne_short_ct$Y$patient <- pd_short_ct$patient
    
    #画图fig2c
    ggplot(tsne_short_ct$Y, aes(x = col1, y = col2, color = factor(cell_types_cl_all, levels = names(anno_colors$tsne)), 
                                shape = patient)) + 
      geom_point(size = 4) + 
      labs(col = "cell type", x = "tSNE dimension 1", y = "tSNE dimension 2") + 
      scale_color_manual(values = anno_colors$tsne)
    
    fig2c 先前对黑色素瘤和胶质母细胞瘤的单细胞分选研究显示,恶性细胞主要按患者样本进行聚集,这也说明了不同病人肿瘤之的异质性很显著。但是有其他乳腺癌的单细胞分析结果却与之相反,每个患者特有的和共有的恶性细胞可以存在一个簇中,暗示了乳腺癌中既有特定的瘤内异质性亚群细胞存在,也“共享”着一部分细胞亚群,而后者与作者的结果是符合的。
    接着使用Monocle包对上皮细胞群进行clustering,并且对患者效应进行regressing out 。monocle_unsup_clust_plots是已经包装好的函数,这个函数采用了 2014Science上的⼀篇《Clustering by fast search and find of density peaks》文章的算法,这篇文献提供⼀种基于密度(density-based )的聚类方法,关于单细胞聚类法方法的选择大家可以参考2017年发表在Molecular Aspects of Medicine上的文章《Identifying cell populations with scRNASeq 》,生信技能树已经有对这篇文献进行过解读。https://mp.weixin.qq.com/s/fWdeGfLPXlK8PsUmvOgw5g
    ## clustering of epithelial cells
    HSMM_allepith_clustering <- monocle_unsup_clust_plots(sceset_obj = sceset_ct[,which(colData(sceset_ct)$cell_types_cl_all == "epithelial")], 
                                                          mat_to_cluster = mat_ct[,which(colData(sceset_ct)$cell_types_cl_all == "epithelial")], 
                                                          anno_colors = anno_colors, name_in_phenodata = "cluster_allepith_regr_disp", 
                                                          disp_extra = 1, save_plots = 0, path_plots = NULL, 
                                                          type_pats = "allpats", regress_pat = 1, use_known_colors = 1, use_only_known_celltypes = 1)
    table(HSMM_allepith_clustering$Cluster)
    > table(HSMM_allepith_clustering$Cluster)
    
      1   2   3   4 
     69 292 169 338 
    
    结果是将868个上皮细胞分成了4个clustering,与原文不一样。

    作者是这么解释的,由于Monocle包的函数reduceDimension and clusterCells有所改变,因此要想重现图片,接下来作者建议使用他们已经整理好的原始数据。

    # due to changes in Monocle's functions (reduceDimension and clusterCells), 
    #the resulting clustering of epithelial cells is slightly different from the original clustering from the paper. for reproducibility 
    #we read in the original clustering of epithelial cells
    
    original_clustering_epithelial <- readRDS(file= "data/original_clustering_epithelial.RDS")
    table(original_clustering_epithelial)
    
    HSMM_allepith_clustering$Cluster <- original_clustering_epithelial
    clustering_allepith <- HSMM_allepith_clustering$Cluster
    #画图fig3a
    plot_cell_clusters(HSMM_allepith_clustering, 1, 2, color = "Cluster", cell_size = 2) + 
      scale_color_manual(values = c("1" = "#ee204d", "2" = "#17806d", "3" = "#b2ec5d", "4" = "#cda4de", "5" = "#1974d2"))
    #给6个样本的868个上皮细胞标记上对应的clusters编号
    clusterings_sep_allepith <- list()
    for (i in patients_now) {
      clusterings_sep_allepith[[i]] <- clustering_allepith[which(HSMM_allepith_clustering$patient == i)]
      names(clusterings_sep_allepith[[i]]) <- colnames(HSMM_allepith_clustering)[which(HSMM_allepith_clustering$patient == i)]
    }
    
    #看看每个cluster的的cycling 和non-cycling细胞比例
    tbl_pd_cluster <- tbl_df(pData(HSMM_allepith_clustering))
    tbl_pd_cluster <- tbl_pd_cluster %>%
      group_by(Cluster) %>%
      mutate(cycling_mel = factor(cycling_mel, levels = c("cycling", "non-cycling"))) %>%
      arrange(cycling_mel)
    
    #画图figS6
    ggplot() +
      geom_bar(data = tbl_pd_cluster, aes(x = Cluster, fill = factor(cycling_mel)), position = position_fill(reverse = TRUE)) +
      scale_fill_manual(values = anno_colors$cycling) +
      labs(fill = "cycling status", y = "fraction of cells")
    
    figS6
    ## 将每一个cluster与全部的cluster进行差异分析
    HSMM_for_DE <- HSMM_allepith_clustering
    diff_test_res <- list()
    #先进行cluster1跟全部的cluster差异分析
    HSMM_for_DE$allvs1 <- clustering_allepith
    HSMM_for_DE$allvs1 <- as.numeric(HSMM_for_DE$allvs1)
    HSMM_for_DE$allvs1[which(HSMM_for_DE$allvs1 != 1)] <- 2
    #差异分析采用monocle的differentialGeneTest函数
    diff_test_res$allvs1 <- differentialGeneTest(HSMM_for_DE, fullModelFormulaStr = "~allvs1", cores = 3) 
    diff_test_res$allvs1 <- diff_test_res$allvs1[order(diff_test_res$allvs1$qval),]#qval排序
    diff_test_res$allvs1 <- diff_test_res$allvs1[which(diff_test_res$allvs1$qval <= 0.1),] #挑选qval <= 0.1的基因
    head(diff_test_res$allvs1[,1:5], n = 10)
    > head(diff_test_res$allvs1[,1:5], n = 10)
            status           family         pval         qval ensembl_gene_id
    HP          OK negbinomial.size 5.727834e-52 4.811381e-48 ENSG00000257017
    PRG4        OK negbinomial.size 4.208455e-26 1.767551e-22 ENSG00000116690
    PLA2G2A     OK negbinomial.size 1.305859e-24 3.656405e-21 ENSG00000188257
    CFH         OK negbinomial.size 1.307494e-23 2.745737e-20 ENSG00000000971
    EGFL6       OK negbinomial.size 1.660370e-21 2.789421e-18 ENSG00000198759
    CCL2        OK negbinomial.size 1.830853e-20 2.197023e-17 ENSG00000108691
    ENPP2       OK negbinomial.size 1.715218e-20 2.197023e-17 ENSG00000136960
    VTN         OK negbinomial.size 3.867117e-19 4.060473e-16 ENSG00000109072
    CLDN1       OK negbinomial.size 9.901388e-15 9.241296e-12 ENSG00000163347
    BCHE        OK negbinomial.size 3.048404e-13 2.560659e-10 ENSG00000114200
    #接着就是cluster2了
    HSMM_for_DE$allvs2 <- clustering_allepith
    HSMM_for_DE$allvs2 <- as.numeric(HSMM_for_DE$allvs2)
    HSMM_for_DE$allvs2[which(HSMM_for_DE$allvs2 != 2)] <- 3
    diff_test_res$allvs2 <- differentialGeneTest(HSMM_for_DE, fullModelFormulaStr = "~allvs2", cores = 3)
    diff_test_res$allvs2 <- diff_test_res$allvs2[order(diff_test_res$allvs2$qval),]
    diff_test_res$allvs2 <- diff_test_res$allvs2[which(diff_test_res$allvs2$qval <= 0.1),]
    head(diff_test_res$allvs2[,1:5], n = 10)
    

    接着就是cluster3,4和5,代码我不放上来了,下一节我们继续学习。

    相关文章

      网友评论

        本文标题:学习一篇NC的单细胞文章(五):tSNE

        本文链接:https://www.haomeiwen.com/subject/hrtbzktx.html