延时队列实现

作者: HannahLi_9f1c | 来源:发表于2021-01-10 09:38 被阅读0次

    考虑使用哪种方式实现延时队列,可能需要考虑下面这些问题:
    及时性 消费端能按时收到
    同一时间消息的消费权重
    可靠性 消息不能出现没有被消费掉的情况
    可恢复 假如有其他情况 导致消息系统不可用了 至少能保证数据可以恢复
    可撤回 因为是延迟消息 没有到执行时间的消息支持可以取消消费
    高可用 多实例 这里指HA/主备模式并不是多实例同时一起工作
    消费端如何消费
    任务丢失的补偿

    一、单机

    1. while+sleep组合

    定义一个线程,然后 while 循环

    public static void main(String[] args) {
        final long timeInterval = 5000;
        new Thread(new Runnable() {
            @Override
            public void run() {
                while (true) {
                    System.out.println(Thread.currentThread().getName() + "每隔5秒执行一次");
                    try {
                        Thread.sleep(timeInterval);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }
        }).start();
    }
    

    这种实现方式下多个定时任务需要开启多个线程,而且线程在做无意义sleep,消耗资源,性能低下。

    2. 最小堆实现

    2.1 Timer

    实现代码,调度两个任务

    public static void main(String[] args) {
        Timer timer = new Timer();
        //每隔1秒调用一次
        timer.schedule(new TimerTask() {
            @Override
            public void run() {
                System.out.println("test1");
            }
        }, 1000, 1000);
        //每隔3秒调用一次
        timer.schedule(new TimerTask() {
            @Override
            public void run() {
                System.out.println("test2");
            }
        }, 3000, 3000);
    
    }
    
    

    schedule实现源码

        public void schedule(TimerTask task, long delay, long period) {
            if (delay < 0)
                throw new IllegalArgumentException("Negative delay.");
            if (period <= 0)
                throw new IllegalArgumentException("Non-positive period.");
            sched(task, System.currentTimeMillis()+delay, -period);
        }
    

    shed里面将任务add到最小堆,然后fixUp进行调整
    TimerThread其实就是一个任务调度线程,首先从TaskQueue里面获取排在最前面的任务,然后判断它是否到达任务执行时间点,如果已到达,就会立刻执行任务

    class TimerThread extends Thread {
    
        boolean newTasksMayBeScheduled = true;
    
        private TaskQueue queue;
    
        TimerThread(TaskQueue queue) {
            this.queue = queue;
        }
    
        public void run() {
            try {
                mainLoop();
            } finally {
                // Someone killed this Thread, behave as if Timer cancelled
                synchronized(queue) {
                    newTasksMayBeScheduled = false;
                    queue.clear();  // Eliminate obsolete references
                }
            }
        }
    
        /**
         * The main timer loop.  (See class comment.)
         */
        private void mainLoop() {
            while (true) {
                try {
                    TimerTask task;
                    boolean taskFired;
                    synchronized(queue) {
                        // Wait for queue to become non-empty
                        while (queue.isEmpty() && newTasksMayBeScheduled)
                            queue.wait();
                        if (queue.isEmpty())
                            break; // Queue is empty and will forever remain; die
    
                        // Queue nonempty; look at first evt and do the right thing
                        long currentTime, executionTime;
                        task = queue.getMin();
                        synchronized(task.lock) {
                            if (task.state == TimerTask.CANCELLED) {
                                queue.removeMin();
                                continue;  // No action required, poll queue again
                            }
                            currentTime = System.currentTimeMillis();
                            executionTime = task.nextExecutionTime;
                            if (taskFired = (executionTime<=currentTime)) {
                                if (task.period == 0) { // Non-repeating, remove
                                    queue.removeMin();
                                    task.state = TimerTask.EXECUTED;
                                } else { // Repeating task, reschedule
                                    queue.rescheduleMin(
                                      task.period<0 ? currentTime   - task.period
                                                    : executionTime + task.period);
                                }
                            }
                        }
                        if (!taskFired) // Task hasn't yet fired; wait
                            queue.wait(executionTime - currentTime);
                    }
                    if (taskFired)  // Task fired; run it, holding no locks
                        task.run();
                } catch(InterruptedException e) {
                }
            }
        }
    }
    

    总结这个利用最小堆实现的方案,相比 while + sleep 方案,多了一个线程来管理所有的任务,优点就是减少了线程之间的性能开销,提升了执行效率;但是同样也带来的了一些缺点,整体的新加任务写入效率变成了 O(log(n))。

    同时,细心的发现,这个方案还有以下几个缺点:

    串行阻塞:调度线程只有一个,长任务会阻塞短任务的执行,例如,A任务跑了一分钟,B任务至少需要等1分钟才能跑
    容错能力差:没有异常处理能力,一旦一个任务执行故障,后续任务都无法执行

    2.2 ScheduledThreadPoolExecutor

    鉴于 Timer 的上述缺陷,从 Java 5 开始,推出了基于线程池设计的 ScheduledThreadPoolExecutor 。

    image

    其设计思想是,每一个被调度的任务都会由线程池来管理执行,因此任务是并发执行的,相互之间不会受到干扰。需要注意的是,只有当任务的执行时间到来时,ScheduledThreadPoolExecutor 才会真正启动一个线程,其余时间 ScheduledThreadPoolExecutor 都是在轮询任务的状态。

    简单的使用示例:

            ScheduledThreadPoolExecutor executor = new ScheduledThreadPoolExecutor(3);
            //启动1秒之后,每隔1秒执行一次
            executor.scheduleAtFixedRate(()-> System.out.println("test3"),1,1, TimeUnit.SECONDS);
            //启动1秒之后,每隔3秒执行一次
            executor.scheduleAtFixedRate((() -> System.out.println("test4")),1,3, TimeUnit.SECONDS);
    
    

    同样的,我们首先打开源码,看看里面到底做了啥

    • 进入scheduleAtFixedRate()方法

    首先是校验基本参数,然后将任务作为封装到ScheduledFutureTask线程中,ScheduledFutureTask继承自RunnableScheduledFuture,并作为参数调用delayedExecute()方法进行预处理

    public ScheduledFuture<?> scheduleAtFixedRate(Runnable command,
                                                  long initialDelay,
                                                  long period,
                                                  TimeUnit unit) {
        if (command == null || unit == null)
            throw new NullPointerException();
        if (period <= 0)
            throw new IllegalArgumentException();
        ScheduledFutureTask<Void> sft =
            new ScheduledFutureTask<Void>(command,
                                          null,
                                          triggerTime(initialDelay, unit),
                                          unit.toNanos(period));
        RunnableScheduledFuture<Void> t = decorateTask(command, sft);
        sft.outerTask = t;
        delayedExecute(t);
        return t;
    }
    
    
    • 继续看delayedExecute()方法

    可以很清晰的看到,当线程池没有关闭的时候,会通过super.getQueue().add(task)操作,将任务加入到队列,同时调用ensurePrestart()方法做预处理

    private void delayedExecute(RunnableScheduledFuture<?> task) {
        if (isShutdown())
            reject(task);
        else {
            super.getQueue().add(task);
            if (isShutdown() &&
                !canRunInCurrentRunState(task.isPeriodic()) &&
                remove(task))
                task.cancel(false);
            else
       //预处理
                ensurePrestart();
        }
    }
    
    

    其中super.getQueue()得到的是一个自定义的new DelayedWorkQueue()阻塞队列,数据存储方面也是一个最小堆结构的队列,这一点在初始化new ScheduledThreadPoolExecutor()的时候,可以看出!

    public ScheduledThreadPoolExecutor(int corePoolSize) {
        super(corePoolSize, Integer.MAX_VALUE, 0, NANOSECONDS,
              new DelayedWorkQueue());
    }
    
    

    打开源码可以看到,DelayedWorkQueue其实是ScheduledThreadPoolExecutor中的一个静态内部类,在添加的时候,会将任务加入到RunnableScheduledFuture数组中。然后调用线程池的ensurePrestart方法将任务添加到线程池。调用链:addWorker->t.run->new Worker.run-> runWorker->Runnable r = timed ?
    workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
    workQueue.take();->task.run->RunnableScheduledFuture.run

    static class DelayedWorkQueue extends AbstractQueue<Runnable>
            implements BlockingQueue<Runnable> {
    
        private static final int INITIAL_CAPACITY = 16;
        private RunnableScheduledFuture<?>[] queue =
            new RunnableScheduledFuture<?>[INITIAL_CAPACITY];
        private final ReentrantLock lock = new ReentrantLock();
        private int size = 0;   
    
        //....
    
        public boolean add(Runnable e) {
            return offer(e);
        }
    
        public boolean offer(Runnable x) {
            if (x == null)
                throw new NullPointerException();
            RunnableScheduledFuture<?> e = (RunnableScheduledFuture<?>)x;
            final ReentrantLock lock = this.lock;
            lock.lock();
            try {
                int i = size;
                if (i >= queue.length)
                    grow();
                size = i + 1;
                if (i == 0) {
                    queue[0] = e;
                    setIndex(e, 0);
                } else {
                    siftUp(i, e);
                }
                if (queue[0] == e) {
                    leader = null;
                    available.signal();
                }
            } finally {
                lock.unlock();
            }
            return true;
        }
    
        public RunnableScheduledFuture<?> take() throws InterruptedException {
            final ReentrantLock lock = this.lock;
            lock.lockInterruptibly();
            try {
                for (;;) {
                    RunnableScheduledFuture<?> first = queue[0];
                    if (first == null)
                        available.await();
                    else {
                        long delay = first.getDelay(NANOSECONDS);
                        if (delay <= 0)
                            return finishPoll(first);
                        first = null; // don't retain ref while waiting
                        if (leader != null)
                            available.await();
                        else {
                            Thread thisThread = Thread.currentThread();
                            leader = thisThread;
                            try {
                                available.awaitNanos(delay);
                            } finally {
                                if (leader == thisThread)
                                    leader = null;
                            }
                        }
                    }
                }
            } finally {
                if (leader == null && queue[0] != null)
                    available.signal();
                lock.unlock();
            }
        }
    }
    
    
    • 回到我们最开始说到的ScheduledFutureTask任务线程类,最终执行任务的其实就是它

    ScheduledFutureTask任务线程,才是真正执行任务的线程类,只是绕了一圈,做了很多包装,run()方法就是真正执行定时任务的方法。

    private class ScheduledFutureTask<V>
                extends FutureTask<V> implements RunnableScheduledFuture<V> {
    
        /** Sequence number to break ties FIFO */
        private final long sequenceNumber;
    
        /** The time the task is enabled to execute in nanoTime units */
        private long time;
    
        /**
         * Period in nanoseconds for repeating tasks.  A positive
         * value indicates fixed-rate execution.  A negative value
         * indicates fixed-delay execution.  A value of 0 indicates a
         * non-repeating task.
         */
        private final long period;
    
        /** The actual task to be re-enqueued by reExecutePeriodic */
        RunnableScheduledFuture<V> outerTask = this;
    
        /**
         * Overrides FutureTask version so as to reset/requeue if periodic.
         */
        public void run() {
            boolean periodic = isPeriodic();
            if (!canRunInCurrentRunState(periodic))
                cancel(false);
            else if (!periodic)//非周期性定时任务
                ScheduledFutureTask.super.run();
            else if (ScheduledFutureTask.super.runAndReset()) {//周期性定时任务,需要重置
                setNextRunTime();
                reExecutePeriodic(outerTask);
            }
        }
    
     //...
    }
    
    

    3.3、小结

    ScheduledExecutorService 相比 Timer 定时器,完美的解决上面说到的 Timer 存在的两个缺点!

    在单体应用里面,使用 ScheduledExecutorService 可以解决大部分需要使用定时任务的业务需求!

    但是这是否意味着它是最佳的解决方案呢?

    我们发现线程池中 ScheduledExecutorService 的排序容器跟 Timer 一样,都是采用最小堆的存储结构,新任务加入排序效率是O(log(n)),执行取任务是O(1)。

    这里的写入排序效率其实是有空间可提升的,有可能优化到O(1)的时间复杂度,也就是我们下面要介绍的时间轮实现

    2.3 DelayQueue

    DelayQueue是一个无界延时队列,内部有一个优先队列,可以重写compare接口,按照我们想要的方式进行排序。
    实现Demo

        public static void main(String[] args) throws Exception {
            DelayQueue<Order> orders = new DelayQueue<>();
            Order order1 = new Order(1000, "1x");
            Order order2 = new Order(2000, "2x");
            Order order3 = new Order(3000, "3x");
            Order order4 = new Order(4000, "4x");
            orders.add(order1);
            orders.add(order2);
            orders.add(order3);
            orders.add(order4);
            for (; ; ) {
                //没有到期会阻塞
                Order take = orders.take();
                System.out.println(take);
            }
        }
    }
    
    class Order implements Delayed {
        @Override
        public String toString() {
            return "DelayedElement{" + "delay=" + delayTime +
                    ", expire=" + expire +
                    ", data='" + data + '\'' +
                    '}';
        }
    
        Order(long delay, String data) {
            delayTime = delay;
            this.data = data;
            expire = System.currentTimeMillis() + delay;
        }
    
        private final long delayTime; //延迟时间
        private final long expire;  //到期时间
        private String data;   //数据
    
        /**
         * 剩余时间=到期时间-当前时间
         */
        @Override
        public long getDelay(TimeUnit unit) {
            return unit.convert(this.expire - System.currentTimeMillis(), TimeUnit.MILLISECONDS);
        }
    
        /**
         * 优先队列里面优先级规则
         */
        @Override
        public int compareTo(Delayed o) {
            return (int) (this.getDelay(TimeUnit.MILLISECONDS) - o.getDelay(TimeUnit.MILLISECONDS));
        }
    

    从源码可以看出,DelayQueue的offer和take方法调用的是优先队列的offer和take。并且使用了ReetrtantLock保证线程安全

        public boolean offer(E e) {
            final ReentrantLock lock = this.lock;
            lock.lock();
            try {
                q.offer(e);
                if (q.peek() == e) {
                    leader = null;
                    available.signal();
                }
                return true;
            } finally {
                lock.unlock();
            }
        }
    
    
    public E take() throws InterruptedException {
            final ReentrantLock lock = this.lock;
            lock.lockInterruptibly();
            try {
                for (;;) {
                    E first = q.peek();
                    if (first == null)
                        available.await();
                    else {
                        long delay = first.getDelay(NANOSECONDS);
                        if (delay <= 0)
                            return q.poll();
                        first = null; // don't retain ref while waiting
                        if (leader != null)
                            available.await();
                        else {
                            Thread thisThread = Thread.currentThread();
                            leader = thisThread;
                            try {
                                available.awaitNanos(delay);
                            } finally {
                                if (leader == thisThread)
                                    leader = null;
                            }
                        }
                    }
                }
            } finally {
                if (leader == null && q.peek() != null)
                    available.signal();
                lock.unlock();
            }
        }
    

    https://my.oschina.net/u/2474629/blog/1919127

    3. 时间轮实现

    代码实现:支持秒级别的循环队列,从下标最小的任务集合开始,提交到线程池执行。然后休眠1s,指针移动到下一个下标处。
    所谓时间轮(RingBuffer)实现,从数据结构上看,简单的说就是循环队列,从名称上看可能感觉很抽象。
    它其实就是一个环形的数组,如图所示,假设我们创建了一个长度为 8 的时间轮。

    image

    插入、取值流程:

    • 1.当我们需要新建一个 1s 延时任务的时候,则只需要将它放到下标为 1 的那个槽中,2、3、...、7也同样如此。
    • 2.而如果是新建一个 10s 的延时任务,则需要将它放到下标为 2 的槽中,但同时需要记录它所对应的圈数,也就是 1 圈,不然就和 2 秒的延时消息重复了
    • 3.当创建一个 21s 的延时任务时,它所在的位置就在下标为 5 的槽中,同样的需要为他加上圈数为 2,依次类推...

    因此,总结起来有两个核心的变量:

    • 数组下标:表示某个任务延迟时间,从数据操作上对执行时间点进行取余
    • 圈数:表示需要循环圈数

    通过这张图可以更直观的理解!

    image

    当我们需要取出延时任务时,只需要每秒往下移动这个指针,然后取出该位置的所有任务即可,取任务的时间消耗为O(1)。

    当我们需要插入任务,也只需要计算出对应的下表和圈数,即可将任务插入到对应的数组位置中,插入任务的时间消耗为O(1)。

    如果时间轮的槽比较少,会导致某一个槽上的任务非常多,那么效率也比较低,这就和 HashMap 的 hash 冲突是一样的,因此在设计槽的时候不能太大也不能太小。

    package com.hui.hui;
    
    import java.util.Collection;
    import java.util.HashSet;
    import java.util.Map;
    import java.util.Set;
    import java.util.concurrent.ConcurrentHashMap;
    import java.util.concurrent.ExecutorService;
    import java.util.concurrent.Executors;
    import java.util.concurrent.TimeUnit;
    import java.util.concurrent.atomic.AtomicBoolean;
    import java.util.concurrent.atomic.AtomicInteger;
    import java.util.concurrent.locks.Condition;
    import java.util.concurrent.locks.Lock;
    import java.util.concurrent.locks.ReentrantLock;
    
    public class RingBuffer {
    
        private static final int STATIC_RING_SIZE = 64;
    
        private Object[] ringBuffer;
    
        private int bufferSize;
    
        /**
         * business thread pool
         */
        private ExecutorService executorService;
    
        private volatile int size = 0;
    
        /***
         * task stop sign
         */
        private volatile boolean stop = false;
    
        /**
         * task start sign
         */
        private volatile AtomicBoolean start = new AtomicBoolean(false);
    
        /**
         * total tick times
         */
        private AtomicInteger tick = new AtomicInteger();
    
        private Lock lock = new ReentrantLock();
        private Condition condition = lock.newCondition();
    
        private AtomicInteger taskId = new AtomicInteger();
        private Map<Integer, Task> taskMap = new ConcurrentHashMap<>(16);
    
        /**
         * Create a new delay task ring buffer by default size
         *
         * @param executorService the business thread pool
         */
        public RingBuffer(ExecutorService executorService) {
            this.executorService = executorService;
            this.bufferSize = STATIC_RING_SIZE;
            this.ringBuffer = new Object[bufferSize];
        }
    
        /**
         * Create a new delay task ring buffer by custom buffer size
         *
         * @param executorService the business thread pool
         * @param bufferSize      custom buffer size
         */
        public RingBuffer(ExecutorService executorService, int bufferSize) {
            this(executorService);
    
            if (!powerOf2(bufferSize)) {
                throw new RuntimeException("bufferSize=[" + bufferSize + "] must be a power of 2");
            }
            this.bufferSize = bufferSize;
            this.ringBuffer = new Object[bufferSize];
        }
    
        /**
         * Add a task into the ring buffer(thread safe)
         *
         * @param task business task extends {@link Task}
         */
        public int addTask(Task task) {
            int key = task.getKey();
            int id;
    
            try {
                lock.lock();
                int index = mod(key, bufferSize);
                task.setIndex(index);
                Set<Task> tasks = get(index);
    
                int cycleNum = cycleNum(key, bufferSize);
                if (tasks != null) {
                    task.setCycleNum(cycleNum);
                    tasks.add(task);
                } else {
                    task.setIndex(index);
                    task.setCycleNum(cycleNum);
                    Set<Task> sets = new HashSet<>();
                    sets.add(task);
                    put(key, sets);
                }
                id = taskId.incrementAndGet();
                task.setTaskId(id);
                taskMap.put(id, task);
                size++;
            } finally {
                lock.unlock();
            }
    
            start();
    
            return id;
        }
    
        /**
         * Cancel task by taskId
         *
         * @param id unique id through {@link #addTask(Task)}
         * @return
         */
        public boolean cancel(int id) {
    
            boolean flag = false;
            Set<Task> tempTask = new HashSet<>();
    
            try {
                lock.lock();
                Task task = taskMap.get(id);
                if (task == null) {
                    return false;
                }
    
                Set<Task> tasks = get(task.getIndex());
                for (Task tk : tasks) {
                    if (tk.getKey() == task.getKey() && tk.getCycleNum() == task.getCycleNum()) {
                        size--;
                        flag = true;
                        taskMap.remove(id);
                    } else {
                        tempTask.add(tk);
                    }
    
                }
                //update origin data
                ringBuffer[task.getIndex()] = tempTask;
            } finally {
                lock.unlock();
            }
    
            return flag;
        }
    
        /**
         * Thread safe
         *
         * @return the size of ring buffer
         */
        public int taskSize() {
            return size;
        }
    
        /**
         * Same with method {@link #taskSize}
         *
         * @return
         */
        public int taskMapSize() {
            return taskMap.size();
        }
    
        /**
         * Start background thread to consumer wheel timer, it will always run until you call method {@link #stop}
         */
        public void start() {
            if (!start.get()) {
                System.out.println("Delay task is starting");
                if (start.compareAndSet(start.get(), true)) {
                    Thread job = new Thread(new TriggerJob());
                    job.setName("consumer RingBuffer thread");
                    job.start();
                    start.set(true);
                }
    
            }
        }
    
        /**
         * Stop consumer ring buffer thread
         *
         * @param force True will force close consumer thread and discard all pending tasks
         *              otherwise the consumer thread waits for all tasks to completes before closing.
         */
        public void stop(boolean force) {
            if (force) {
                stop = true;
                executorService.shutdownNow();
            } else {
                System.out.println("Delay task is stopping");
                if (taskSize() > 0) {
                    try {
                        lock.lock();
                        condition.await();
                        stop = true;
                    } catch (InterruptedException e) {
                        System.out.println("InterruptedException" + e);
                    } finally {
                        lock.unlock();
                    }
                }
                executorService.shutdown();
            }
    
        }
    
        private Set<Task> get(int index) {
            return (Set<Task>) ringBuffer[index];
        }
    
        private void put(int key, Set<Task> tasks) {
            int index = mod(key, bufferSize);
            ringBuffer[index] = tasks;
        }
    
        /**
         * Remove and get task list.
         *
         * @param key
         * @return task list
         */
        private Set<Task> remove(int key) {
            Set<Task> tempTask = new HashSet<>();
            Set<Task> result = new HashSet<>();
    
            Set<Task> tasks = (Set<Task>) ringBuffer[key];
            if (tasks == null) {
                return result;
            }
    
            for (Task task : tasks) {
                if (task.getCycleNum() == 0) {
                    result.add(task);
    
                    size2Notify();
                } else {
                    // decrement 1 cycle number and update origin data
                    task.setCycleNum(task.getCycleNum() - 1);
                    tempTask.add(task);
                }
                // remove task, and free the memory.
                taskMap.remove(task.getTaskId());
            }
    
            //update origin data
            ringBuffer[key] = tempTask;
    
            return result;
        }
    
        private void size2Notify() {
            try {
                lock.lock();
                size--;
                if (size == 0) {
                    condition.signal();
                }
            } finally {
                lock.unlock();
            }
        }
    
        private boolean powerOf2(int target) {
            if (target < 0) {
                return false;
            }
            int value = target & (target - 1);
            if (value != 0) {
                return false;
            }
    
            return true;
        }
    
        private int mod(int target, int mod) {
            // equals target % mod
            target = target + tick.get();
            return target & (mod - 1);
        }
    
        private int cycleNum(int target, int mod) {
            //equals target/mod
            return target >> Integer.bitCount(mod - 1);
        }
    
        /**
         * An abstract class used to implement business.
         */
        public abstract static class Task extends Thread {
    
            private int index;
    
            private int cycleNum;
    
            private int key;
    
            /**
             * The unique ID of the task
             */
            private int taskId;
    
            @Override
            public void run() {
            }
    
            public int getKey() {
                return key;
            }
    
            /**
             * @param key Delay time(seconds)
             */
            public void setKey(int key) {
                this.key = key;
            }
    
            public int getCycleNum() {
                return cycleNum;
            }
    
            private void setCycleNum(int cycleNum) {
                this.cycleNum = cycleNum;
            }
    
            public int getIndex() {
                return index;
            }
    
            private void setIndex(int index) {
                this.index = index;
            }
    
            public int getTaskId() {
                return taskId;
            }
    
            public void setTaskId(int taskId) {
                this.taskId = taskId;
            }
        }
    
        private class TriggerJob implements Runnable {
    
            @Override
            public void run() {
                int index = 0;
                while (!stop) {
                    try {
                        Set<Task> tasks = remove(index);
                        for (Task task : tasks) {
                            executorService.submit(task);
                        }
    
                        if (++index > bufferSize - 1) {
                            index = 0;
                        }
    
                        //Total tick number of records
                        tick.incrementAndGet();
                        TimeUnit.SECONDS.sleep(1);
    
                    } catch (Exception e) {
                        System.out.println("Exception" + e);
                    }
    
                }
    
                System.out.println("Delay task has stopped");
            }
        }
    
        public static void main(String[] args) {
            RingBuffer ringBufferWheel = new RingBuffer(Executors.newFixedThreadPool(2));
            for (int i = 0; i < 3; i++) {
                RingBuffer.Task job = new Job();
                job.setKey(i);
                ringBufferWheel.addTask(job);
            }
        }
    
        public static class Job extends RingBuffer.Task {
            @Override
            public void run() {
    
                System.out.println("test5"+getIndex());
            }
        }
    }
    
    

    二、分布式

    之前说的单机实现,一旦服务器重启,那么延时任务会丢失,而分布式的方案则不会丢失任务。

    Redis ZSet实现

    1. 底层实现:Redis的底层实现是当key大小小于某个阈值,并且键值对个数小于某个阈值(都可配置),使用ZipList实现,否则使用SkipList和Hash实现,SkipList中按照score排序,hash存储成员到分数的映射。
    2. ZSet API
    • 添加,如果值存在添加,将会重新排序。zadd
      127.0.0.1:6379>zadd myZSet 1 zlh ---添加分数为1,值为zlh的zset集合
    • 查看zset集合的成员个数。zcard
      127.0.0.1:6379>zcard myZSet
    • 查看Zset指定范围的成员,withscores为输出结果带分数。zrange
      127.0.0.1:6379>zrange mZySet 0 -1 ----0为开始,-1为结束,输出顺序结果为: zlh tom jim
    • 获取zset成员的下标位置,如果值不存在返回null。zrank
      127.0.0.1:6379>zrank mZySet Jim ---Jim的在zset集合中的下标为2
    • 获取zset集合指定分数之间存在的成员个数。zcount
      127.0.0.1:6379>zcount mySet 1 3 ---输出分数>=1 and 分数 <=3的成员个数为3
    1. 实现思路:
    • 添加任务时,将当前时间+延时时间作为SkipList的分词,job的key作为成员标识加入ZSet
    • 搬运线程开启定时任务,将在当前时间戳之前的任务添加到队列中
    • 开启消费线程,无限循环,超时从队列获取Job,将任务放到线程池中消费
    • 添加任务,消费线程,搬运线程,都需要获取Redis分布式锁

    RabbitMQ

    参考:https://www.jianshu.com/p/fb83c68feec4

    相关文章

      网友评论

        本文标题:延时队列实现

        本文链接:https://www.haomeiwen.com/subject/hsjfaktx.html