生产者消费者模型
生产者消费者模型可以描述为:
①生产者持续生产,直到仓库放满产品,则停止生产进入等待状态;仓库不满后继续生产;
②消费者持续消费,直到仓库空,则停止消费进入等待状态;仓库不空后,继续消费;
③生产者可以有多个,消费者也可以有多个;
对应到程序中,仓库对应缓冲区,可以使用队列来作为缓冲区,并且这个队列应该是有界的,即最大容量是固定的;进入等待状态,则表示要阻塞当前线程,直到某一条件满足,再进行唤醒。
常见的实现方式主要有以下几种。
①使用wait()
和notify()
②使用Lock
和Condition
③使用信号量Semaphore
④使用JDK
自带的阻塞队列
⑤使用管道流
使用wait()和notify()实现
前提是要熟悉Object
的几个方法:
-
wait()
:当前线程释放锁,直到等到通知,再去获取锁 -
sleep()
:当前线程休眠,但不释放锁 -
notify()
:唤醒其他正在wait的线程
参考代码如下:
public class ProducerConsumer1 {
class Producer extends Thread {
private String threadName;
private Queue<Goods> queue;
private int maxSize;
public Producer(String threadName, Queue<Goods> queue, int maxSize) {
this.threadName = threadName;
this.queue = queue;
this.maxSize = maxSize;
}
@Override
public void run() {
while (true) {
//模拟生产过程中的耗时操作
Goods goods = new Goods();
try {
Thread.sleep(new Random().nextInt(1000));
} catch (InterruptedException e) {
e.printStackTrace();
}
synchronized (queue) {
while (queue.size() == maxSize) {
try {
System.out.println("队列已满,【" + threadName + "】进入等待状态");
queue.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
queue.add(goods);
System.out.println("【" + threadName + "】生产了一个商品:【" + goods.toString() + "】,目前商品数量:" + queue.size());
queue.notifyAll();
}
}
}
}
class Consumer extends Thread {
private String threadName;
private Queue<Goods> queue;
public Consumer(String threadName, Queue<Goods> queue) {
this.threadName = threadName;
this.queue = queue;
}
@Override
public void run() {
while (true) {
Goods goods;
synchronized (queue) {
while (queue.isEmpty()) {
try {
System.out.println("队列已空,【" + threadName + "】进入等待状态");
queue.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
goods = queue.remove();
System.out.println("【" + threadName + "】消费了一个商品:【" + goods.toString() + "】,目前商品数量:" + queue.size());
queue.notifyAll();
}
//模拟消费过程中的耗时操作
try {
Thread.sleep(new Random().nextInt(1000));
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
@Test
public void test() {
int maxSize = 5;
Queue<Goods> queue = new LinkedList<>();
Thread producer1 = new Producer("生产者1", queue, maxSize);
Thread producer2 = new Producer("生产者2", queue, maxSize);
Thread producer3 = new Producer("生产者3", queue, maxSize);
Thread consumer1 = new Consumer("消费者1", queue);
Thread consumer2 = new Consumer("消费者2", queue);
producer1.start();
producer2.start();
producer3.start();
consumer1.start();
consumer2.start();
while (true) {
}
}
}
几个注意的地方:
①确定锁的对象是队列queue
;
②不要把生产过程和消费过程写在同步块中,这些操作无需同步,同步的仅仅是放入和取出这两个动作;
③因为是持续生产,持续消费,要用while(true){...}
的方式将【生产、放入】或【取出、消费】的操作都一直进行。
④但由于是对队列使用synchronized
的方式加锁,同一时刻,要么在放入,要么在取出,两者不能同时进行。
使用Lock和Condition实现
前提是要熟悉Lock
接口以及常用实现类ReentrantLock
,以及Condition
的两个常用方法:
-
await()
:等待Condition的满足,会释放锁 -
signal()
:唤醒其他正在等待该Condition
的线程
参考代码如下:
public class ProducerConsumer2 {
class Producer extends Thread {
private String threadName;
private Queue<Goods> queue;
private Lock lock;
private Condition notFullCondition;
private Condition notEmptyCondition;
private int maxSize;
public Producer(String threadName, Queue<Goods> queue, Lock lock, Condition notFullCondition, Condition notEmptyCondition, int maxSize) {
this.threadName = threadName;
this.queue = queue;
this.lock = lock;
this.notFullCondition = notFullCondition;
this.notEmptyCondition = notEmptyCondition;
this.maxSize = maxSize;
}
@Override
public void run() {
while (true) {
//模拟生产过程中的耗时操作
Goods goods = new Goods();
try {
Thread.sleep(new Random().nextInt(100));
} catch (InterruptedException e) {
e.printStackTrace();
}
lock.lock();
try {
while (queue.size() == maxSize) {
try {
System.out.println("队列已满,【" + threadName + "】进入等待状态");
notFullCondition.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
queue.add(goods);
System.out.println("【" + threadName + "】生产了一个商品:【" + goods.toString() + "】,目前商品数量:" + queue.size());
notEmptyCondition.signalAll();
} finally {
lock.unlock();
}
}
}
}
class Consumer extends Thread {
private String threadName;
private Queue<Goods> queue;
private Lock lock;
private Condition notFullCondition;
private Condition notEmptyCondition;
public Consumer(String threadName, Queue<Goods> queue, Lock lock, Condition notFullCondition, Condition notEmptyCondition) {
this.threadName = threadName;
this.queue = queue;
this.lock = lock;
this.notFullCondition = notFullCondition;
this.notEmptyCondition = notEmptyCondition;
}
@Override
public void run() {
while (true) {
Goods goods;
lock.lock();
try {
while (queue.isEmpty()) {
try {
System.out.println("队列已空,【" + threadName + "】进入等待状态");
notEmptyCondition.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
goods = queue.remove();
System.out.println("【" + threadName + "】消费了一个商品:【" + goods.toString() + "】,目前商品数量:" + queue.size());
notFullCondition.signalAll();
} finally {
lock.unlock();
}
//模拟消费过程中的耗时操作
try {
Thread.sleep(new Random().nextInt(100));
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
@Test
public void test() {
int maxSize = 5;
Queue<Goods> queue = new LinkedList<>();
Lock lock = new ReentrantLock();
Condition notEmptyCondition = lock.newCondition();
Condition notFullCondition = lock.newCondition();
Thread producer1 = new ProducerConsumer2.Producer("生产者1", queue, lock, notFullCondition, notEmptyCondition, maxSize);
Thread producer2 = new ProducerConsumer2.Producer("生产者2", queue, lock, notFullCondition, notEmptyCondition, maxSize);
Thread producer3 = new ProducerConsumer2.Producer("生产者3", queue, lock, notFullCondition, notEmptyCondition, maxSize);
Thread consumer1 = new ProducerConsumer2.Consumer("消费者1", queue, lock, notFullCondition, notEmptyCondition);
Thread consumer2 = new ProducerConsumer2.Consumer("消费者2", queue, lock, notFullCondition, notEmptyCondition);
Thread consumer3 = new ProducerConsumer2.Consumer("消费者3", queue, lock, notFullCondition, notEmptyCondition);
producer1.start();
producer2.start();
producer3.start();
consumer1.start();
consumer2.start();
consumer3.start();
while (true) {
}
}
}
要注意的地方:
放入和取出操作均是用的同一个锁,所以在同一时刻,要么在放入,要么在取出,两者不能同时进行。因此,与使用wait()和notify()实现类似,这种方式的实现并不能最大限度地利用缓冲区(即例子中的队列)。如果要实现同一时刻,既可以放入又可以取出,则要使用两个重入锁,分别控制放入和取出的操作,具体实现可以参考LinkedBlockingQueue
。
使用信号量Semaphore实现
前提是熟悉信号量Semaphore
的使用方式,尤其是release()
方法,Semaphore
在release
之前不必一定要先acquire
。(如果不熟悉Semaphore
,可以参考阅读【多线程与并发】Java并发工具类)
There is no requirement that a thread that releases a permit must
have acquired that permit by calling acquire.
Correct usage of a semaphore is established by programming convention
in the application.
参考代码如下:
public class ProducerConsumer4 {
class Producer extends Thread {
private String threadName;
private Queue<Goods> queue;
private Semaphore queueSizeSemaphore;
private Semaphore concurrentWriteSemaphore;
private Semaphore notEmptySemaphore;
public Producer(String threadName, Queue<Goods> queue, Semaphore concurrentWriteSemaphore, Semaphore queueSizeSemaphore, Semaphore notEmptySemaphore) {
this.threadName = threadName;
this.queue = queue;
this.concurrentWriteSemaphore = concurrentWriteSemaphore;
this.queueSizeSemaphore = queueSizeSemaphore;
this.notEmptySemaphore = notEmptySemaphore;
}
@Override
public void run() {
while (true) {
//模拟生产过程中的耗时操作
Goods goods = new Goods();
try {
Thread.sleep(new Random().nextInt(100));
} catch (InterruptedException e) {
e.printStackTrace();
}
try {
queueSizeSemaphore.acquire();//获取队列未满的信号量
concurrentWriteSemaphore.acquire();//获取读写的信号量
queue.add(goods);
System.out.println("【" + threadName + "】生产了一个商品:【" + goods.toString() + "】,目前商品数量:" + queue.size());
} catch (InterruptedException e) {
e.printStackTrace();
}finally {
concurrentWriteSemaphore.release();
notEmptySemaphore.release();
}
}
}
}
class Consumer extends Thread {
private String threadName;
private Queue<Goods> queue;
private Semaphore queueSizeSemaphore;
private Semaphore concurrentWriteSemaphore;
private Semaphore notEmptySemaphore;
public Consumer(String threadName, Queue<Goods> queue, Semaphore concurrentWriteSemaphore, Semaphore queueSizeSemaphore, Semaphore notEmptySemaphore) {
this.threadName = threadName;
this.queue = queue;
this.concurrentWriteSemaphore = concurrentWriteSemaphore;
this.queueSizeSemaphore = queueSizeSemaphore;
this.notEmptySemaphore = notEmptySemaphore;
}
@Override
public void run() {
while (true) {
Goods goods;
try {
notEmptySemaphore.acquire();
concurrentWriteSemaphore.acquire();
goods = queue.remove();
System.out.println("【" + threadName + "】生产了一个商品:【" + goods.toString() + "】,目前商品数量:" + queue.size());
} catch (InterruptedException e) {
e.printStackTrace();
}finally {
concurrentWriteSemaphore.release();
queueSizeSemaphore.release();
}
//模拟消费过程中的耗时操作
try {
Thread.sleep(new Random().nextInt(100));
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
@Test
public void test() {
int maxSize = 5;
Queue<Goods> queue = new LinkedList<>();
Semaphore concurrentWriteSemaphore = new Semaphore(1);
Semaphore notEmptySemaphore = new Semaphore(0);
Semaphore queueSizeSemaphore = new Semaphore(maxSize);
Thread producer1 = new ProducerConsumer4.Producer("生产者1", queue, concurrentWriteSemaphore, queueSizeSemaphore, notEmptySemaphore);
Thread producer2 = new ProducerConsumer4.Producer("生产者2", queue, concurrentWriteSemaphore, queueSizeSemaphore, notEmptySemaphore);
Thread producer3 = new ProducerConsumer4.Producer("生产者3", queue, concurrentWriteSemaphore, queueSizeSemaphore, notEmptySemaphore);
Thread consumer1 = new ProducerConsumer4.Consumer("消费者1", queue, concurrentWriteSemaphore, queueSizeSemaphore, notEmptySemaphore);
Thread consumer2 = new ProducerConsumer4.Consumer("消费者2", queue, concurrentWriteSemaphore, queueSizeSemaphore, notEmptySemaphore);
Thread consumer3 = new ProducerConsumer4.Consumer("消费者3", queue, concurrentWriteSemaphore, queueSizeSemaphore, notEmptySemaphore);
producer1.start();
producer2.start();
producer3.start();
consumer1.start();
consumer2.start();
consumer3.start();
while (true) {
}
}
}
要注意的地方:
①理解代码中的三个信号量的含义
queueSizeSemaphore:(其中的许可证数量,可以理解为队列中可以再放入多少个元素),该信号量的许可证初始数量为仓库大小,即maxSize
;生产者每放置一个商品,则该信号量-1,即执行acquire()
,表示队列中已经添加了一个元素,要减少一个许可证;消费者每取出一个商品,该信号量+1,即执行release()
,表示队列中已经少了一个元素,再给你一个许可证。
notEmptySemaphore:(其中的许可证数量,可以理解为队列中可以取出多少个元素),该信号量的许可证初始数量为0;生产者每放置一个商品,则该信号量+1,即执行release()
,表示队列中添加了一个元素;消费者每取出一个商品,该信号量-1,即执行acquire()
,表示队列中已经少了一个元素,要减少一个许可证;
concurrentWriteSemaphore,相当于一个写锁,在放入或取出商品的时候,都需要先获取再释放许可证。
②由于实现中,使用了concurrentWriteSemaphore
实现了对队列并发写的控制,在同一时刻,只能对队列进行一种操作:放入或取出。假如把concurrentWriteSemaphore
中的信号量初始化为2或者2以上的值,就会出现多个生产者同时放入或多个消费者同时消费的情况,而使用的LinkedList
是不允许并发进行这种修改的,否则会出现溢出或取空的情况。所以,concurrentWriteSemaphore
只能设置为1,也就导致性能与使用wait() / notify()
方式类似,性能不高。
使用jdk自带的阻塞队列实现
前提是要记住两个阻塞取放方法,因为阻塞队列提供了很多存取元素的方法,几种存取方式在队列已满/已空时采取的措施如下:
方法/方式处理 | 抛出异常 | 返回特殊值 | 一直阻塞 | 超时退出 |
---|---|---|---|---|
插入 | add(e) | offer(e) | put(e) | offer(e, time, unit) |
移除 | remove() | poll() | take() | poll(time, unit) |
检查 | element() | peek() | 不可用 | 不可用 |
所以,在这里,要选用put()
和take()
这两个会阻塞的方法。
参考代码如下:
public class ProducerConsumer3 {
class Producer extends Thread {
private String threadName;
private BlockingQueue<Goods> queue;
public Producer(String threadName, BlockingQueue<Goods> queue) {
this.threadName = threadName;
this.queue = queue;
}
@Override
public void run() {
while (true){
Goods goods = new Goods();
try {
//模拟生产过程中的耗时操作
Thread.sleep(new Random().nextInt(100));
queue.put(goods);
System.out.println("【" + threadName + "】生产了一个商品:【" + goods.toString() + "】,目前商品数量:" + queue.size());
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
class Consumer extends Thread {
private String threadName;
private BlockingQueue<Goods> queue;
public Consumer(String threadName, BlockingQueue<Goods> queue) {
this.threadName = threadName;
this.queue = queue;
}
@Override
public void run() {
while (true){
try {
Goods goods = queue.take();
System.out.println("【" + threadName + "】消费了一个商品:【" + goods.toString() + "】,目前商品数量:" + queue.size());
//模拟消费过程中的耗时操作
Thread.sleep(new Random().nextInt(100));
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
@Test
public void test() {
int maxSize = 5;
BlockingQueue<Goods> queue = new LinkedBlockingQueue<>(maxSize);
Thread producer1 = new ProducerConsumer3.Producer("生产者1", queue);
Thread producer2 = new ProducerConsumer3.Producer("生产者2", queue);
Thread producer3 = new ProducerConsumer3.Producer("生产者3", queue);
Thread consumer1 = new ProducerConsumer3.Consumer("消费者1", queue);
Thread consumer2 = new ProducerConsumer3.Consumer("消费者2", queue);
producer1.start();
producer2.start();
producer3.start();
consumer1.start();
consumer2.start();
while (true) {
}
}
}
要注意的地方:
如果使用LinkedBlockingQueue作为队列实现,则可以实现:在同一时刻,既可以放入又可以取出,因为LinkedBlockingQueue内部使用了两个重入锁,分别控制取出和放入。
如果使用ArrayBlockingQueue作为队列实现,则在同一时刻只能放入或取出,因为ArrayBlockingQueue内部只使用了一个重入锁来控制并发修改操作。
使用管道流实现
//TODO
无锁的缓存框架: Disruptor
BlockingQueue 实现生产者和消费者模式简单易懂,但是BlockingQueue
并不是一个高性能的实现:它完全使用锁和阻塞来实现线程之间的同步。在高并发的场合,它的性能并不是特别的优越。(ConconcurrentLinkedQueue
是一个高性能的队列,但并不没有实现BlockingQueue
接口,即不支持阻塞操作)。
Disruptor是LMAX公司开发的高效的无锁缓存队列。它使用无锁的方式实现了一个环形队列,非常适合于实现生产者和消费者模式,如:事件和消息的发布。
//TODO 应用场景的代码实现
参考
Java 实现生产者 – 消费者模型:各种实现方式的性能
高性能的生产者-消费者:无锁的实现:无锁实现
Java生产者和消费者模型的5种实现方式
生产者/消费者问题的多种Java实现方式
Java阻塞队列ArrayBlockingQueue和LinkedBlockingQueue实现原理分析:两种常用阻塞队列的区别
网友评论