美文网首页
用 Python 实现逻辑回归(Logistic Regress

用 Python 实现逻辑回归(Logistic Regress

作者: bdd1b3ad7323 | 来源:发表于2017-10-13 22:15 被阅读455次

    本文采用的训练方法是牛顿法(Newton Method)。

    代码

    import numpy as np
    
    class LogisticRegression(object):
        """
        Logistic Regression Classifier training by Newton Method
        """
    
        def __init__(self, error: float = 0.7, max_epoch: int = 100):
            """
            :param error: float, if the distance between new weight and 
                          old weight is less than error, the process 
                          of traing will break.
            :param max_epoch: if training epoch >= max_epoch the process 
                              of traing will break.
            """
            self.error = error
            self.max_epoch = max_epoch
            self.weight = None
            self.sign = np.vectorize(lambda x: 1 if x >= 0.5 else 0)
    
        def p_func(self, X_):
            """Get P(y=1 | x)
            :param X_: shape = (n_samples + 1, n_features)
            :return: shape = (n_samples)
            """
            tmp = np.exp(self.weight @ X_.T)
            return tmp / (1 + tmp)
    
        def diff(self, X_, y, p):
            """Get derivative
            :param X_: shape = (n_samples, n_features + 1) 
            :param y: shape = (n_samples)
            :param p: shape = (n_samples) P(y=1 | x)
            :return:  shape = (n_features + 1) first derivative
            """
            return -(y - p) @ X_
    
        def hess_mat(self, X_, p):
            """Get Hessian Matrix
            :param p: shape = (n_samples) P(y=1 | x)
            :return: shape = (n_features + 1, n_features + 1) second derivative
            """
            hess = np.zeros((X_.shape[1], X_.shape[1]))
            for i in range(X_.shape[0]):
                hess += self.X_XT[i] * p[i] * (1 - p[i])
            return hess
    
        def newton_method(self, X_, y):
            """Newton Method to calculate weight
            :param X_: shape = (n_samples + 1, n_features)
            :param y: shape = (n_samples)
            :return: None
            """
            self.weight = np.ones(X_.shape[1])
            self.X_XT = []
            for i in range(X_.shape[0]):
                t = X_[i, :].reshape((-1, 1))
                self.X_XT.append(t @ t.T)
    
            for _ in range(self.max_epoch):
                p = self.p_func(X_)
                diff = self.diff(X_, y, p)
                hess = self.hess_mat(X_, p)
                new_weight = self.weight - (np.linalg.inv(hess) @ diff.reshape((-1, 1))).flatten()
    
                if np.linalg.norm(new_weight - self.weight) <= self.error:
                    break
                self.weight = new_weight
    
        def fit(self, X, y):
            """
            :param X_: shape = (n_samples, n_features)
            :param y: shape = (n_samples)
            :return: self
            """
            X_ = np.c_[np.ones(X.shape[0]), X]
            self.newton_method(X_, y)
            return self
    
        def predict(self, X) -> np.array:
            """
            :param X: shape = (n_samples, n_features] 
            :return: shape = (n_samples]
            """
            X_ = np.c_[np.ones(X.shape[0]), X]
            return self.sign(self.p_func(X_))
    

    测试代码

    import matplotlib.pyplot as plt
    import sklearn.datasets
    
    def plot_decision_boundary(pred_func, X, y, title=None):
        """分类器画图函数,可画出样本点和决策边界
        :param pred_func: predict函数
        :param X: 训练集X
        :param y: 训练集Y
        :return: None
        """
    
        # Set min and max values and give it some padding
        x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
        y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
        h = 0.01
        # Generate a grid of points with distance h between them
        xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
        # Predict the function value for the whole gid
        Z = pred_func(np.c_[xx.ravel(), yy.ravel()])
        Z = Z.reshape(xx.shape)
        # Plot the contour and training examples
        plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
        plt.scatter(X[:, 0], X[:, 1], s=40, c=y, cmap=plt.cm.Spectral)
        if title:
            plt.title(title)
        plt.show()
    

    效果

    效果
    更多机器学习代码,请访问 https://github.com/WiseDoge/plume

    相关文章

      网友评论

          本文标题:用 Python 实现逻辑回归(Logistic Regress

          本文链接:https://www.haomeiwen.com/subject/hsptuxtx.html