Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
Note: The solution set must not contain duplicate triplets.
For example, given array S = [-1, 0, 1, 2, -1, -4],
A solution set is:
[
[-1, 0, 1],
[-1, -1, 2]
]
Solution1
将问题先转换成2sum,然后进行计算
算法复杂度为O
class Solution(object):
def threeSum(self, nums):
"""
:type nums: List[int]
:rtype: List[List[int]]
"""
result = []
for i, v in enumerate(nums):
temp = self.twoSum(0-v, nums[:i] + nums[i+1:])
for item in temp:
item.append(v)
result.append(sorted(item)) if sorted(item) not in result else None
return result
def twoSum(self, sum, nums):
aset = set()
result = []
for i in nums:
if (sum - i) in aset:
result.append([sum - i, i])
else:
aset.add(i)
return result
Solution2
- 将整个列表排序,这是实现下面算法的精髓
- 整个列表的遍历可以同时从首尾开始
class Solution(object):
def threeSum(self, nums):
"""
:type nums: List[int]
:rtype: List[List[int]]
"""
result = []
nums.sort()
for i in range(len(nums) - 2):
if i > 0 and nums[i] == nums[i-1]:
continue
l, r = i + 1, len(nums) - 1
while l < r:
print nums[i], nums[l], nums[r]
s = nums[i] + nums[l] + nums[r]
if s < 0:
l += 1
elif s > 0:
r -= 1
else:
result.append([nums[i], nums[l], nums[r]])
while(l < r) and nums[l] == nums[l + 1]:
l += 1
while(l < r) and nums[r] == nums[r - 1]:
r -= 1
l += 1
r -= 1
return result
思考
整个算法的精妙之处还在于去重:
- 首元素的去重,本次的首元素如果跟上一次的首元素相同,则pass
- 中间元素的去重,2nd元素如果跟它的下一个元素相同,则pass;3rd元素如果跟它的下一个元素相同则pass
网友评论